Starting from what Yuval Filmus said:
$w = a^n b^n a^n b^n a^n b^n $ (this word is accepted by your language).
Then you'll have to start to "cut" the word into pieces, multiple times.
Start with:
$
u = a^j \\
z = a^{n-i-j} b^n a^n b^n a^n b^n \\
vxy = a^i \to v^{i_1}x^{i_2}y^{i_3} = a^i \Rightarrow i_1 + i_2 + i_3 = i $
So now the word looks like this:
$
w = uvxyz = {a^j} \:\ a^{ki_1} \:\ a^{i_2} \:\ a^{ki_3} \:\ a^{n-i-j} \:\ b^n a^n b^n a^n b^n $
Now start to simplify it:
$
w = a^{ki_1} \:\ a^{i_2} \:\ a^{ki_3} \:\ a^{n-(i_1 + i_2 + i_3)} \:\ b^n a^n b^n a^n b^n =\\
\:\:\ = a^{(k-1)i_1i_1} \:\ a^{i_2} \:\ a^{(k-1)i_3i_3} \:\ a^{n-i_1 - i_2 - i_3} \:\ b^n a^n b^n a^n b^n = \\
\:\:\ = a^{(k-1)i_1} \:\ a^{(k-1)i_3} \:\ a^n \:\ b^n a^n b^n a^n b^n = \\
\:\:\ = a^{(k-1)(i_1 + i_3)} \:\ a^n \:\ b^n a^n b^n a^n b^n = \\
\:\:\ = a^{n(k-1)(i_1 + i_3)} \:\ b^n a^n b^n a^n b^n =
$
$i_1, i_3 > 0$ as the v and y must not be the empty word;
For $k > 1, n(k-1)(i_1\ i_3) \neq n$
This is only the simplest case. From here you can say that this is true for $vxy = b^i$, then again for $a^i,b^i$ from the second and last $d\ in\ w=ddd$.
After this, you'll have to take cases like $vxy = a^pb^q$, for each $d\ in\ w=ddd$ and $vxy = b^pa^q$ for each $dd\ in\ w=ddd$.
As you can imagine, the cases go on, but be sure to not repeat yourself:
($u = \varepsilon$ is the same as $u = a^j,\ j = 0$),
and be careful with cases that are equivalent.