$\overline{HALT}_{TM} \leq_m E_{TM}$. Define a machine $H$ on input $\langle M, w \rangle$ as follows:
H(<M, w>):
Construct a machine M' defined as follows:
M'(x):
Run M on w for |x| steps
if (M halts on w after |x| steps)
Accept x
else
Reject x
Output <M'>
If $\langle M, w \rangle \in \overline{HALT}_{TM}$, then $M$ never halts on $w$, which means $L(M') = \emptyset$ and $\langle M' \rangle \in E_{TM}$. If $\langle M, w \rangle \notin \overline{HALT}_{TM}$, then $M$ halts on $w$ after some finite number of steps, $k$, thus, on inputs string $x$ such that $|x| \geq k$, $M'$ accepts $x$, which means $L(M') \neq \emptyset$ and $\langle M' \rangle \notin E_{TM}$.
Since we can reduce $\overline{HALT}_{TM}$ to $E_{TM}$, if $E_{TM}$ is recognizable, then $\overline{HALT}_{TM}$ is recognizable and the halting problem is decidable (since we know $HALT_{TM}$ is recognizable), a contradiction. Thus, $E_{TM} \notin RE$, which means $E_{TM} \notin R$.