I am basically just paraphrasing the steps I've outlined here: https://cs.stackexchange.com/a/83650/68251.
This is assuming the base case is $T(n) \leq c$ when $n < 5$.
Claim
$T(n) \leq 10\cdot c\cdot n$
Proof by Induction (on $n$)
Basis: $n < 5 \implies T(n) \leq c < 10\cdot c < 10\cdot c \cdot n$
Induction: Assume the claim holds for any $n' < n$, we then have
$$\begin{align}
T(n) &\leq cn + T(n/5) + T(7n/10)\\
&\leq cn + 10c\cdot n /5 + 10c\cdot 7n /10\\
&= cn + 10c\cdot 9n /10\\
&= 10 \cdot c \cdot n & \square\\
\end{align}$$