I have a funcion $T: \mathbb{N}\to\mathbb{N}$ defined as:
$$T(n)=\begin{cases} 6 &\text{ if } n=0,\\ T(n-1) + 6n + 6 &\text{otherwise.} \end{cases}$$
How can I apply the Master Theorem to this problem? I have only seen the M.T. in one of these two formats:
$$T(n) = aT(n/b) + f (n)$$ $$T(n) = aT(n/b) + \Theta(n^c)$$
So I'm wondering how to transform the $T(n-1)$ to something usable. Is it even possible to apply the theorem to this kind of problem?