I have this problem which is described as follows:
Input: You are given a multi-set $M$ (a set that can contain duplicates), and two numbers $P$ and $T$. $M = {(x_1,y_1), (x_2,y_2), ..., (x_n,y_n)}$. Each $x$ and $y$ is an integer $>= 0$. $P$ in an integer $>= 0$. $T$ is an integer $> 0$.
Question: Is there a subset $G$ of $M$, such that the sum of every $x$ value of $G$ is $> P$ and the sum of every $y$ value of $G$ is $< T$? (Note: You are basically taking from $M$. For example: if $M$ has two $(1,1)$'s then $G$ can contain at most two $(1, 1)$'s)
I want to reduce it to from the subset sum problem, but I am not sure how because there's two conditions to solve for...
Can anyone help with this problem?