When I apply pumping lemma on this language: ${L=\{010^n:n\ge0\}}$ over the alphabet ${\Sigma =\{0,1\}}$ I get that it is non-regular despite the fact that it is regular.
- let ${n=4}$, then $w=010000$
- $w=xyz$ , $ { \mid xy\mid \leq n} $ and $ {\mid y\mid \geq 1}$
- $x=0$ , $y=10$ , $z=000$
- let $i =2$
- $xy^2z = 01010000$ $\not\in L$ so L is non-regular.
so, what I'm missing?