2

The PKG performs the following steps

  1. Choose $p,q \in \mathbb{P}$.
  2. Calculate $N=pq$.
  3. Calculate $\phi (n)=(p-1)(q-1)$.
  4. Choose $e$ with $gcd(e,\phi(n))=1$ and $1 < e < \phi(n)$.
  5. Let it be $e = {p^{e_1}_1} \cdot {p^{e_2}_2} \cdot \ldots {p^{e_k}_k}$ the prime factorization of $e$ for $i \in k:p_i \in \mathbb{P},e_i \in \mathbb{N}$. Choose an injective mapping $H$ with \begin{align*} H &: \begin{cases} \{0,1\}^i \rightarrow \mathbb{Z} / N \mathbb{Z} & \\ ID \mapsto m = {p^{e_{m_1}}_1} \cdot {p^{e_{m_2}}_2} \cdot \ldots {p^{e_{m_k}}_k} & (i \in k:p_i \in \mathbb{P},e_{m_i} \in \mathbb{N}) \end{cases} \end{align*}

and $eH(ID)<\phi(n)$ for $i \in \mathbb{n}$. The publicly available parameters are $\texttt{params} = \langle e, N, H \rangle$ and the $\texttt{master-key}$ is $\phi(n) \in \mathbb{Z} / N \mathbb{Z}$.

The PKG takes then an $ID \in \{0,1\}^{*}$ (from Alice) and calculates the corresponding Secret Key $d_{ID}$ with \begin{align*} (e H(ID)) d_{ID} \equiv 1 \text{ mod } \phi(n) \end{align*}

When Bob wants to encrypt a message $m \in \mathbb{Z} / N \mathbb{Z}$, he takes $\texttt{params}$ and calculates \begin{align*} c \equiv m^{e H(ID)} \text{ mod } N \end{align*}

Alice decrypts this ciphertext $c$ with \begin{align*} m \equiv c^{d_{ID}} \text{ mod } N \end{align*}


EXAMPLE

  1. $p = 1010231362240711373894507355467 \in \mathbb{P}$ and
    $q = 793738224882014450642935586909 \in \mathbb{P}$.

  2. $N=pq=801859248185081566400631735533731882269717325788593134781503$

  3. $\phi(N) = 2^3 \cdot 31 \cdot 283 \cdot 29347 \cdot 39547129 \cdot 422250739 \cdot 1354514929 \cdot 17211833615713895353775639$.

  4. $e = 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29$.

  5. It apllies $ID \in \{0,1\}^8$ with $ID=\langle b_1,b_2,\ldots,b_8 \rangle$ for $i \in 8:b_i \in \{0,1\}$. Choose $H$ as: \begin{align*} H &: \begin{cases} \{0,1\}^8 \rightarrow \mathbb{Z} / N \mathbb{Z} & \\ ID \mapsto m = {5^{{b_1}}} \cdot {7^{{b_2}}} \cdot \ldots \cdot {29^{{b_8}}} & \end{cases} \end{align*}

The publicly available parameters are \begin{align*} \texttt{params} &= \langle 1078282205, 801859248185081566400631735533731882269717325788593134781503, H \rangle \end{align*} The $\texttt{master-key}$ is \begin{align*} \phi(N) &= 801859248185081566400631735531927912682594599964055691839128 \end{align*}

The PKG takes then $ID = 01101111$ as the ID of user "o". Then $H(ID) = 5^0 \cdot 7^1 \cdot 11^1 \cdot 13^0 \cdot 17^1 \cdot 19^1 \cdot 23^1 \cdot 29^1 = 16588957$, $eH(ID)=17887577132610185$ and $d_{ID}=308315206989333722335381678529602981822693965290742774973561$.

User "i" wants now to encrypt the message 3463463463463424234234234. He calculates \begin{align*} c &\equiv 3463463463463424234234234^{17887577132610185} \text{ mod N} \\ &\equiv 353097511425650359803351296367609508451542189692844760010085 \text{ mod N} \end{align*}

User "o" decrypt the ciphertext with: \begin{align*} m &\equiv 353097511425650359803351296367609508451542189692844760010085^{D_{ID}} \text{ mod N} \\ &\equiv 3463463463463424234234234 \text{ mod N} \end{align*}

marius
  • 53
  • 4
  • Is it the same $e$ in 4 and 5? And also, in 5, does $i\in k$ mean $i\in[1,…,k]$? – fgrieu Oct 07 '21 at 12:02
  • Yes it is, in 5) it is just the prime factorization of $e$. And yes it does, it is used for the representation of the prime factorization. – marius Oct 07 '21 at 12:04

2 Answers2

5

No, this is not secure.

Problem is that Alice, knowing $d_{ID}$ and $e_{ID}$, can compute $f=d_{ID}\cdot e_{ID}-1$ which is a multiple of both $p-1$ and $q-1$; then from $N,f$ can efficiently factor $N$ using the algorithm detailed here; and then can computes $d_{ID}$ for any ${ID}$, and thus decipher the normal way.

fgrieu
  • 140,762
  • 12
  • 307
  • 587
3

No, it's not.

Alice knows her own $eH(ID)$ and she knows the corresponding private key. But knowing those two is enough to calculate the factorization of $N$. A probailitstic algorithm to calculate $p,q$ from $e,d$ was in the original RSA paper, later and Alexander May showed in Computing the RSA Secret Key is Deterministic Polynomial Time Equivalent to Factoring a deterministic way to do the same.

So in the end, Alice can just compute the factorization $p,q$, and then she is able to read messages to all other receivers as well.

tylo
  • 12,654
  • 24
  • 39