Let $x, y, z$ denote three $n$-bit words such that $$z = (x \oplus y) \oplus ((x \land y) \ll 1).$$
The NORX paper contains the generalized description of the algebraic normal forms for each bit of $x$ given $y$ and $z$: $$\begin{array}{l} x_0 = (z_0 \oplus y_0),\\ x_1 = (z_1 \oplus y_1) \oplus (x_0 \land y_0),\\ \vdots\\ x_i = (z_i \oplus y_i) \oplus (x_{i-1} \land y_{i-1}),\\ \vdots\\ x_{n-1} = (z_{n-1} \oplus y_{n-1}) \oplus (x_{n-2} \land y_{n-2}), \end{array}$$
where $w_i$ denotes an $i$-th bit of the word $w \in \{x, y, z\}$.
What is the corresponding generalized description of the algebraic normal forms for each bit of $z$ given $x$ and $y$?