I have come across an RSA problem that goes like this:
You have $p,q,cp,$ and $cq$.
You know that
- $cp = (m^{dp}) \bmod p$ and
- $cq = (m^{dq}) \bmod q$
where
- $dp = d \bmod(p-1)$ and
- $dq = d \bmod(q-1)$.
With $p$ 1023-bit.
p = 77521726407994312521574336297980709217530535587222058104143959969571660552797969474172937932738698506571416574103619966726945303225764903362666667915390994020563629603293171675938588115667633661770464872616447872544118726459248341421707592374348579901510230543653339835551959943115753367330314736507150772889
q = 122043042610716803715485743054462817831797141151559626639660496010897753782905342871017865915858397385764743054519977321492994176452745910908749665987785423001182475295840889607694693125144689913443175241343223873981089261312260861004124800781256596427988822384724029792777632967012658639985349009210056116091
cp = 59541694220665015603506075680282236406328112807267216674188239193490851380911340890624190172062558224787860350672780489394061999335612457967049040181819906153599084668914230173111131906093647509390351820805346222543999428186721157360369017623698866284406487457004308459071130900275586148944902383219800200993
cq = 15281742228497214552346817366564582907638255619077531248069440760470985265165749879478383668076090388631632911972324378253632937895945694638171824766288669021780545670263807231637778601559768864667795718038562064859779318600228186879233482290716651865639425284629942145861317464254055008370322465189231689348
Now what I have found extremely hard about this is the lack of $e$.
I know I can find $c$ with $c = \text{CRT}(cp,cq) \bmod n$ so far and working on it, but from there I am stuck. $\text{CRT}$ is the Chinese Remainder Theorem.
c = 1234500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000054321
Numbers: https://pastebin.com/rP6ay1hG
Does anyone know how to find $m$? It has to be feasible in time (Aka not take months)