From Wikipedia(https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Proofs_of_correctness):
$m^{ed}$ ≡ $m$ $\pmod{q}$
$m^{ed}$ ≡ $m$ $\pmod{p}$
then $m^{ed}$ ≡ $m$ $\pmod{pq}$
Question:
if $m^{ed}$ ≡ $m$ $\pmod{q}$,then $q$|$m^{ed}$- $m$
if $m^{ed}$ ≡ $m$ $\pmod{p}$,then $p$|$m^{ed}$- $m$
that is to say, $m^{ed}$- $m$ is the common multiple of both $p$ and $q$
At this time, if there is $lcm(p,q)=pq$, then $m^{ed}$ ≡ $m$ $\pmod{pq}$.
However, I am not sure $lcm(p,q)=pq$ holds true or not, so how can I prove $m^{ed}$ ≡ $m$ $\pmod{pq}$?
\pmod
to its full power. – fgrieu Sep 21 '15 at 16:45Namely, $m^{ed} ≡ m$ $\pmod{pq}$ Am I right?
– Matt Elson Sep 22 '15 at 02:11$m^{ed}\equiv m\pmod{pq}$
, and $\operatorname{lcm}(p,q)=pq$ as$\operatorname{lcm}(p,q)=pq$
– fgrieu Sep 22 '15 at 05:47