-1

I am trying to calculate the molar volume of a perfect gas under standard ambient temperature and pressure, but I'm having problems with the units.

$$\begin{align} V_m = \dfrac{RT}{p} &= \dfrac{(8.314 \ \text{J K$^{-1}$ mol$^{-1}$})(298.15 \ \text{K})}{10^5 \text{Pa}} \\ &= 0.024789 \ \text{N$^{-1}$ m$^2$ mol$^{-1}$ Nm} \\ &= 0.024789 \ \text{m$^{3}$ mol$^{-1}$} \\ &= 0.24789 \ \text{dm$^{3}$ mol$^{-1}$} \ \ \ (\text{1 metre $=$ 10 decimetres)} \end{align}$$

I am told that it should be $24.789 \ \text{dm$^3$ mol$^{-1}$}$.

I would greatly appreciate it if someone would please take the time to help me understand what I'm doing incorrectly.

Firefox1921
  • 170
  • 11
The Pointer
  • 1,073
  • 8
  • 17

2 Answers2

1

$$\begin{align} V_m = \dfrac{RT}{p} &= \dfrac{(8.314 \ \text{J K$^{-1}$ mol$^{-1}$})(298.15 \ \text{K})}{10^5 \text{Pa}} \\ &= 0.024789 \ \text{N$^{-1}$ m$^2$ mol$^{-1}$ Nm} \\ &= 0.024789 \ \text{m$^{3}$ mol$^{-1}$} \end{align}$$

Here's where you're going wrong. $1\ m = 10\ dm$. So, $$1\ m^3 = 1000\ dm^3\ !!!$$

That automatically makes it $24.789 \ \text{dm$^3$ mol$^{-1}$}$

Cheers!

Firefox1921
  • 170
  • 11
0

Your calculation is correct, except the last line. One meter is $10$ decimeter. But one cubic meter is $1000$ cubic decimeter. So $0.0248$ m$^3$ = $24.8$ dm$^3$. That's all.

Maurice
  • 28,241
  • 3
  • 29
  • 61