I building a deep learning model to detect what drug user use. I have many symptoms and duration of each drug. I create X and y data but, for example, LSD have an effect duration of 180 - 720 minutes. I really need make 540 arrays? I really want a help.
My LSD array:
[28, 180],
[28, 720],
[29, 180],
[29, 720],
[30, 180],
[30, 720],
[31, 180],
[31, 720],
[32, 180],
[32, 720],
[33, 180],
[33, 720],
[34, 180],
[34, 720],
[35, 180],
[35, 720],
[36, 180],
[36, 720],
[37, 180],
[37, 720],
[1, 180],
[1, 720],
[38, 180],
[38, 720],
[12, 180],
[12, 720],
[9, 180],
[9, 720],
[24, 180],
[24, 720],
[17, 180],
[17, 720],
[7, 180],
[7, 720],
[4, 180],
[4, 720],
In first position I have differents symptoms and in second position duration. I just duplicated each symptoms and set min duration and max duration. But this return to me a perfection model. I know, I need add all minutes to each symptoms, but how I make this using python?
List of symptoms
0 - relaxamento
1 - euforia
2 - diminuicao da memoria a curto prazo
3 - boca seca
4 - habilidades motoras debilitadas
5 - olhos vermelhos
6 - humor
7 - aumento frequencia cardiaca
8 - aumento apetite
9 - concentracao debilitada
10 - sensacao de poder
11 - ausencia de medo
12 - ansiedade
13 - agressividade
14 - excitacao
15 - perda do apetite
16 - tremores
17 - dilatacao da pupila
18 - dentes anestesiados
19 - insonia
20 - movimentos descontrolados
21 - espasmos maxilar
22 - dor de cabeça
23 - visao turva
24 - nauseas
25 - desidratacao
26 - periodos de depressao
27 - perda total da memoria
28 - ilusões
29 - alucinações
30 - grande sensibilidade sensorial
31 - experiências místicas
32 - flashbacks
33 - paranoia
34 - perda da noção temporal e espacial
35 - confusão
36 - perda do controle emocional
37 - sentimento de bem-estar
38 - pânico
39 - sonolencia
40 - batimentos cardiacos diminuem
41 - insuficiencia respiratoria
42 - desanimo
43 - desinteresse pela vida familiar/profissional
44 - sensacao de estar no paraiso
45 - mal-estar
46 - Incapacidade de sentir prazer
47 - Incapacidade de sentir dor
** Durations effects (in minutes) **
Cannabis. 120 - 240
Cocain. 30 - 40
Ecstasy. 240 - 480
LSD. 180 - 720
Heroin. 45 - 60
My full code:
X = [
#cannabis
[0, 120],
[0, 240],
[1, 120],
[1, 240],
[2, 120],
[2, 240],
[3, 120],
[3, 240],
[4, 120],
[4, 240],
[5, 120],
[5, 240],
[6, 120],
[6, 240],
[7, 120],
[7, 240],
[8, 120],
[8, 240],
[9, 120],
[9, 240],
#cocain
[1, 30],
[1, 40],
[10, 30],
[10, 40],
[11, 30],
[11, 40],
[12, 30],
[12, 40],
[13, 30],
[13, 40],
[14, 30],
[14, 40],
[15, 30],
[15, 40],
[7, 30],
[7, 40],
[16, 30],
[16, 40],
[17, 30],
[17, 40],
[18, 30],
[18, 40],
#ecstasy
[19, 240],
[19, 480],
[20, 240],
[20, 480],
[21, 240],
[21, 480],
[22, 240],
[22, 480],
[23, 240],
[23, 480],
[24, 240],
[24, 480],
[25, 240],
[25, 480],
[26, 240],
[26, 480],
[27, 240],
[27, 480],
[15, 240],
[15, 480],
#LSD
[28, 180],
[28, 720],
[29, 180],
[29, 720],
[30, 180],
[30, 720],
[31, 180],
[31, 720],
[32, 180],
[32, 720],
[33, 180],
[33, 720],
[34, 180],
[34, 720],
[35, 180],
[35, 720],
[36, 180],
[36, 720],
[37, 180],
[37, 720],
[1, 180],
[1, 720],
[38, 180],
[38, 720],
[12, 180],
[12, 720],
[9, 180],
[9, 720],
[24, 180],
[24, 720],
[17, 180],
[17, 720],
[7, 180],
[7, 720],
[4, 180],
[4, 720],
# Heroin
[39, 45],
[39, 60],
[29, 45],
[29, 60],
[40, 45],
[40, 60],
[41, 45],
[41, 60],
[42, 45],
[42, 60],
[43, 45],
[43, 60],
[44, 45],
[44, 60],
[12, 45],
[12, 60],
[45, 45],
[45, 60],
[46, 45],
[46, 60],
[1, 45],
[1, 60],
[13, 45],
[13, 60],
[24, 45],
[24, 60],
]
"""
# DROGAS
0 - Cannabis
1 - Cocain
2 - Ecstasy
3 - LSD
4 - Heroin
"""
y = [
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5)
from sklearn import tree
my_classifier = tree.DecisionTreeClassifier()
my_classifier.fit(X_train, y_train)
predictions = my_classifier.predict(X_test)
print(predictions)
from sklearn.metrics import accuracy_score
print(accuracy_score(y_test, predictions))
Sorry for my bad english :( Thanks