Numerical results showed that the series
$$Q=\sum_{n=1}^{\infty} (-1)^n \frac{\cos(\ln(n))}{n^{\epsilon}},\epsilon>0\tag{1}$$
with $\epsilon=10^{-6}$ converged to $-0.53259554096828...$
We can rewrite this series as:
$$Q=\sum_{k=0}^{\infty} a_k\tag{2}$$
$$a_k=\frac{\cos(\ln(2k+1))}{(2k+1)^{\epsilon}}-\frac{\cos(\ln(2k+2))}{(2k+2)^{\epsilon}}\tag{3}$$
Does this series converge?
Using a method in a related question, we can show that (with $m=2k+1$)
$$-a_k=m^{-1-\epsilon}\left(\epsilon\cos(\ln m)+\sin(\ln m)\right)+O(m^{-2-\epsilon}).\qquad m\to\infty \tag{4}$$
Thus
$$|a_k|\le m^{-1-\epsilon}\left(\epsilon|\cos(\ln m)|+|\sin(\ln m)|\right)+O(m^{-2-\epsilon})=O(m^{-1-\epsilon})=O(k^{-1-\epsilon})\tag{5}$$
Therefore the series in (1) is convergent.
Am I right?
Thanks- mike