$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\int_{0}^{1}{1 - x \over 1 - x^{6}}\,\ln^{4}\pars{x}\,\dd x=
{16 \over 243\root{3}}\,\pi^{5} + {605 \over 54}\,\zeta\pars{5}}$
Lets $\ds{\quad x_{n} = \expo{n\pi\ic/3}\,,\quad n = 0,1,2,3,4,5\quad}$ such that
\begin{align}
{1 - x \over 1 - x^{6}}&
=\pars{x - 1}\sum_{n = 0}^{5}{x_{n}/6 \over x - x_{n}}
={1 \over 6}\sum_{n = 0}^{5}x_{n}
\pars{{x - x_{n} \over x - x_{n}} + {x_{n} - 1 \over x - x_{n}}}
\\[3mm]&={1 \over 6}\,\underbrace{\sum_{n = 0}^{5}x_{n}}_{\ds{=\ 0}}
+{1 \over 6}\sum_{n = 0}^{5}{x_{n}\pars{x_{n} - 1} \over x - x_{n}}
={1 \over 6}\sum_{n = 1}^{5}{x_{n}\pars{x_{n} - 1} \over x - x_{n}}
={1 \over 6}\sum_{n = -2}^{2}{x_{n + 3}\pars{x_{n + 3} - 1} \over x - x_{n + 3}}
\\[3mm]&={1 \over 6}\sum_{n = -2}^{2}{x_{n}\pars{x_{n} + 1} \over x + x_{n}}
\end{align}
Then,
$$
\color{#c00000}{\int_{0}^{1}{1 - x \over 1 - x^{6}}\,\ln^{4}\pars{x}\,\dd x}
={1 \over 6}\sum_{n = -2}^{2}x_{n}\pars{x_{n} + 1}
\color{#00f}{\int_{0}^{1}{\ln^{4}\pars{x} \over x + x_{n}}\,\dd x}\tag{1}
$$
Lets evaluate the integral:
\begin{align}
&\color{#00f}{\int_{0}^{1}{\ln^{k}\pars{x} \over x - a}\,\dd x}
=-\int_{0}^{1}{\ln^{k}\pars{a\bracks{x/a}} \over 1 - x/a}
\,{\dd x \over a}
=-\int_{0}^{1/a}{\ln^{k}\pars{ax} \over 1 - x}\,\dd x
\\[3mm]&=-\int_{0}^{1/a}\ln\pars{1 - x}k\ln^{k - 1}\pars{ax}\,{1 \over x}\,\dd x
=k\int_{0}^{1/a}{{\rm Li}_{1}\pars{x} \over x}\,\ln^{k - 1}\pars{ax}\,\dd x
\\[3mm]&=-k\pars{k - 1}\int_{0}^{1/a}
{{\rm Li}_{2}\pars{x} \over x}\,\ln^{k - 2}\pars{ax}\,\dd x
=\cdots
\\[3mm]&=\pars{-1}^{r}\,{k! \over \pars{k - r - 1}!}
\int_{0}^{1/a}
{{\rm Li}_{1 + r}\pars{x} \over x}\,\ln^{k - r - 1}\pars{ax}\,\dd x
=\cdots
\\[3mm]&=\pars{-1}^{k - 1}k!
\int_{0}^{1/a}{{\rm Li}_{k}\pars{x} \over x}\,\dd x
=\pars{-1}^{k + 1}k!\,{\rm Li}_{k + 1}\pars{1 \over a}
\end{align}
such that
$$
\color{#00f}{\int_{0}^{1}{\ln^{4}\pars{x} \over x - x_{n}}\,\dd x}
=-24\,{\rm Li}_{5}\pars{-\,{1 \over x_{n}}}
=-24\,{\rm Li}_{5}\pars{-x_{-n}}
$$
With expression $\pars{1}$:
\begin{align}
&\color{#c00000}{\int_{0}^{1}{1 - x \over 1 - x^{6}}\,\ln^{4}\pars{x}\,\dd x}
=-4\sum_{n = -2}^{2}x_{n}\pars{x_{n} + 1}{\rm Li}_{5}\pars{-x_{-n}}
\\[3mm]&=-8\,{\rm Li}_{5}\pars{-1}
-8\,\Re\sum_{n = 1}^{2}x_{n}\pars{x_{n} + 1}{\rm Li}_{5}\pars{-x_{-n}}
\\[3mm]&=-8\,{\rm Li}_{5}\pars{-1}
-8\,\Re\sum_{n = 1}^{2}\expo{n\pi\ic/3}\pars{\expo{n\pi\ic/3} + 1}
{\rm Li}_{5}\pars{\expo{\bracks{3 - n}\pi\ic/3}}
\\[3mm]&=-8\,{\rm Li}_{5}\pars{-1}
-8\,\Re\sum_{n = 1}^{2}\expo{n\pi\ic/2}\pars{\expo{n\pi\ic/6} + \expo{-n\pi\ic/6}}
{\rm Li}_{5}\pars{\expo{\bracks{3 - n}\pi\ic/3}}
\\[3mm]&=-8\,{\rm Li}_{5}\pars{-1}
-16\,\Re\sum_{n = 1}^{2}\expo{n\pi\ic/2}\cos\pars{n\pi \over 6}
{\rm Li}_{5}\pars{\expo{\bracks{3 - n}\pi\ic/3}}
\\[3mm]&=-8\ \underbrace{{\rm Li}_{5}\pars{-1}}
_{\ds{\color{#c00000}{-\,{15 \over 16}\,\zeta\pars{5}}}}\ +\
8\root{3}\ \underbrace{\Im{\rm Li}_{5}\pars{\expo{2\pi\ic/3}}}
_{\ds{\color{#c00000}{2\pi^{5} \over 729}}}\ +\
8\ \underbrace{\Re{\rm Li}_{5}\pars{\expo{\pi\ic/3}}}
_{\ds{\color{#c00000}{{25 \over 54}\,\zeta\pars{5}}}}
\end{align}
So,
$$\color{#66f}{\large%
\int_{0}^{1}{1 - x \over 1 - x^{6}}\,\ln^{4}\pars{x}\,\dd x
=
{16 \over 243\root{3}}\,\pi^{5} + {605 \over 54}\,\zeta\pars{5}}
$$