I am motivated by this question, and want to find a solution to the following problem.
Question: How many monic, irreducible polynomials of degree $n$ are there over the finite field $\mathbb{F}_q$ for some prime $q$?
The solution provided in the original question pivots on two central claims:
Claim 1: $\mathbb{F}_{q^n}$ is the splitting field of the polynomial $g(x)=x^{q^n}−x$
Claim 2: Every monic irreducible polynomial of degree $n$ divides $g$.
Claim 1 I am happy with, but in the case of Claim 2 I cannot see why it is true. Could someone please explain.