0

If $f: [0,1] \to \mathbb{R}$ is a (not necessarily continuous) function satisfying

$$ |f(x)-f(y)| \leq M|x-y|^{\alpha} $$

where $M$ and $\alpha$ are fixed real numbers and $\alpha > 1$. Classify all such functions $f$.

1 Answers1

1

for $x = a$ and $y = a + h$, then: $\left|\dfrac{f(a+h) - f(a)}{h}\right| \le M\cdot |h|^{\alpha - 1}$, and letting $h \to 0$ we have: $|f'(a)| = 0$, implying $f'(a) = 0$ so $f$ must be a constant function.

DeepSea
  • 77,651