If $\Delta f(x)=f(x+\Delta x)-f(x)$, $(a)$ prove that $$\Delta\{\Delta f(x)\}=\Delta^2f(x)=f(x+2\Delta x)-2f(x+\Delta x)+f(x);$$ $(b)$ derive an expression for $\Delta^n f(x)$ where $n$ is any positive integer; and $(c)$ show that $$\lim\limits_{\Delta x\to0}\dfrac{\Delta^n f(x)}{(\Delta x)^n}=f^{(n)}(x)$$ if this limit exists.
I was able to prove $(a)$, and this is the expression I derived for $(b)$
$$\Delta ^{n}f(x)=\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i}f(x+i\Delta x)$$
I an fairly sure that the above is correct.
However, I am not sure how to prove,
$$\lim_{\Delta x\rightarrow 0} \frac{\Delta ^{n}f(x)}{\Delta x^{n}} = \lim_{\Delta x\rightarrow 0} \frac{\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i}f(x+i\Delta x)}{\Delta x^{n}} = f^{(n)}(x)$$