let $f(x)$ is continous and $f'(x)$ is continous on $[0,\infty)$,show that
$$\lim_{x\to+\infty}(f'(x)+f(x))=l$$ if and only if: $\displaystyle\lim_{x\to+\infty}f(x)=l$ and $f'(x)$ is uniformly continuous on $[0,+\infty)$.
How prove this it? Thank you.
I can prove this if $$\lim_{x\to+\infty}(f'(x)+f(x))=l$$ then we have $\displaystyle\lim_{x\to+\infty}f(x)=l$
My Part of the Solution:
without loss of we let $l=0$,Give $\epsilon>0$,let $a>0$ be such that $|f(x)+f'(x)|<\epsilon$ for $x\ge a$
Then by the generalized mean value theorem there is $\xi\in (a,x)$ such that $$\dfrac{e^x f(x)-e^af(a)}{e^x-e^a}=f(\xi)+f'(\xi)$$ Thus $$|f(x)-f(a)e^{a-x}|<\epsilon|1-e^{a-x}|$$ so $$|f(x)|<|f(a)|e^{a-x}+\epsilon|1-e^{a-x}|$$ so $$|f(x)|<2\epsilon$$ for sufficiently large $x$.
But How can prove $f'(x)$ is uniformly continuous on $[0,+\infty)$
and other question: How prove if$\displaystyle\lim_{x\to+\infty}f(x)=l$ and $f'(x)$ is uniformly continuous on $[0,+\infty)$
then we have
$$\lim_{x\to+\infty}(f'(x)+f(x))=l$$