I've enumerate all 24 elements in $SL_2(F_3)$. As $24=2^3\times 3$, I need to find groups of order 3. Sylow Theorem tells me that the number of Sylow 3-subgroups $n_3 \equiv 1\ \text{mod}\ 3$ and divides $8$, so $n_3= 1 \text{ or } 4$.
I've found 2 of them: upper/lower triangular matrices with 1 on the diagonal, i.e., $$ S_1=\left\{ \left( \begin{matrix} 1& 0\\ 0& 1\\ \end{matrix} \right) ,\left( \begin{matrix} 1& 1\\ 0& 1\\ \end{matrix} \right) ,\left( \begin{matrix} 1& 2\\ 0& 1\\ \end{matrix} \right) \right\} ,S_2=\left\{ \left( \begin{matrix} 1& 0\\ 0& 1\\ \end{matrix} \right) ,\left( \begin{matrix} 1& 0\\ 1& 1\\ \end{matrix} \right) ,\left( \begin{matrix} 1& 0\\ 2& 1\\ \end{matrix} \right) \right\} . $$ The remaining ones are given by my friend: Groups generated by $ \left( \begin{matrix} 0& 2\\ 1& 2\\ \end{matrix} \right) ,\left( \begin{matrix} 2& 2\\ 1& 0\\ \end{matrix} \right) $ respectively. However, this process is rather experimental than theoretical. I wonder if there is a logical explanation to this, or a method to figure them out more efficiently.
Any idea or help would be appreciated! Thank you!