In General
For $|\alpha|\lt1$,
$$
\begin{align}
\log\left(1+\alpha^2+2\alpha\cos(\theta)\right)
&=\log\left(1+\alpha e^{i\theta}\right)+\log\left(1+\alpha e^{-i\theta}\right)\tag1\\[9pt]
&=\sum_{k=1}^\infty(-1)^{k-1}\frac{\alpha^k}ke^{ik\theta}+\sum_{k=1}^\infty(-1)^{k-1}\frac{\alpha^k}ke^{-ik\theta}\tag2\\
&=\sum_{k=1}^\infty(-1)^{k-1}2\frac{\alpha^k}k\cos(k\theta)\tag3
\end{align}
$$
Explanation:
$(1)$: $1+\alpha^2+2\alpha\cos(\theta)=\left(1+\alpha e^{i\theta}\right)\left(1+\alpha e^{-i\theta}\right)$
$(2)$: power series for $\log(1+x)$
$(3)$: $e^{ik\theta}+e^{-ik\theta}=2\cos(k\theta)$
Thus, integrating $(3)$ over $[0,\pi]$ gives
$$
\begin{align}
0
&=\int_0^\pi\log\left(1+\alpha^2+2\alpha\cos(\theta)\right)\,\mathrm{d}\theta\tag4\\
&=\pi\log(2\alpha)+\int_0^\pi\log\left(\frac{1+\alpha^2}{2\alpha}+\cos(\theta)\right)\,\mathrm{d}\theta\tag5\\
&=\pi\log\left(\frac2{\beta+\sqrt{\beta^2-1}}\right)+\int_0^\pi\log\left(\beta+\cos(\theta)\right)\,\mathrm{d}\theta\tag6
\end{align}
$$
Explanation:
$(4)$: $(3)$ and $\int_0^\pi\cos(k\theta)\,\mathrm{d}\theta=0$
$(5)$: pull $\pi\log(2\alpha)$ out of the integral
$(6)$: $\alpha=\frac1{\beta+\sqrt{\beta^2-1}}$ is the root of $\frac{1+\alpha^2}{2\alpha}=\beta$ with $|\alpha|\lt1$
Therefore,
$$
\int_0^\pi\log\left(\beta+\cos(\theta)\right)\,\mathrm{d}\theta
=\pi\log\left(\frac{\beta+\sqrt{\beta^2-1}}2\right)\tag7
$$
Substitute $\beta\mapsto\frac\beta\gamma$ and add $\pi\log(\gamma)$:
$$
\int_0^\pi\log\left(\beta+\gamma\cos(\theta)\right)\,\mathrm{d}\theta
=\pi\log\left(\frac{\beta+\sqrt{\beta^2-\gamma^2}}2\right)\tag8
$$
Applied to this problem
$$
\int_0^\pi\log(2+\cos(x))\,\mathrm{d}x=\pi\log\left(\frac{2+\sqrt3}2\right)\tag9
$$