I have the following elliptic curve that I want to look up in the LMFDB-database:
$$\text{k}:\space\space\space y^2-3y=x^3+x^2$$
Using the Weierstrass form of my elliptic curve, I wrote my equation in the form:
$$y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6$$
Which gives $a_1=0,a_2=1,a_3=-3,a_4=0$ and $a_6=0$. Then I will get two parameters of this elliptic curve:
- Discriminant: $$\Delta=-b_2^2b_8-8b_4^3-27b_6^2+9b_2b_4b_6$$
Where $b_2=a_1^2+4a_2,b_4=2a_4+a_1a_3,b_6=a_3^2+4a_6$ and $b_8=a_1^2a_6+4a_2a_6-a_1a_3a_4+a_2a_3^2-a_4^2$.
Using my values I get:
$$\Delta=-2331$$
- j-invariant:
$$\text{j}=\frac{\left(b_2^2-24b_4\right)^3}{\Delta}$$
Using my values I get:
$$\text{j}=-\frac{4096}{2331}$$
But when I tried to look up my elliptic curve using the discriminant I didn't find mine.
Where did I go wrong?