Let $f(x)=e^{-x^2}.$ It is known that the Fourier transform of Gaussian is a Gaussian.
My question: Can we use complex analysis (contour integration etc..) to compute
$$\hat{f}(\xi)= \int_{\mathbb R} e^{-x^2} e^{ix\xi} dx \ (\xi \in \mathbb R)$$
Motivation: My motivation comes from trying to justify:
$$\begin{eqnarray*} \int_\mathbb{R} e^{-\left(\frac{1}{t^2}+i\frac{1}{2t}\right)x^2}e^{-i2\pi x\xi} dx & = & \int_\mathbb{R} e^{-\frac{\sqrt{4+t^2}}{2t^2}x^2}e^{-i2\pi x \left(e^{-\frac{i}{2}\arctan\left(\frac{t}{2}\right)}\xi\right)} dx \\ \end{eqnarray*} $$
which came about from an Answer to a previous (now deleted) Question.
$ \int_\mathbb{R} e^{-\left(\frac{1}{t^2}+i\frac{1}{2t}\right)x^2}e^{-i2\pi x\xi} dx = \int_\mathbb{R} e^{-\frac{\sqrt{4+t^2}}{2t^2}x^2}e^{-i2\pi x \left(e^{-\frac{i}{2}\arctan\left(\frac{t}{2}\right)}\xi\right)} dx $ ? I thought for only for Gaussian there is a similar argument?
– Learn Dec 02 '19 at 10:18