Integrate $$\displaystyle \int_{0}^{\pi}{\frac{x\cos{x}}{1+\sin^{2}{x}}dx}$$

- 53,687

- 2,050
-
1Hint: let t=sinx. – Easy Mar 07 '13 at 13:53
-
3Why was this marked as duplicate? The other integral, although similar in appearance, is not the same creature at all: the techniques used on that page can't be applied to this one. – L. F. Mar 07 '13 at 15:36
-
@L.F. I believe using $t=\frac\pi2-x$ you will get the other integral. – Martin Sleziak Mar 07 '13 at 15:57
-
@MartinSleziak It doesn't though: that subsitution yields the other integral, but with altered bounds. – L. F. Mar 07 '13 at 16:09
-
@L.F. If I'm not mistaken, you'll get something like $\frac\pi2 \int \frac{\sin t}{1+\cos^2 t} - \int \frac{t\sin t}{1+\cos^2 t}$ after this substitution. – Martin Sleziak Mar 07 '13 at 16:22
-
@MartinSleziak Precisely - but both of those are taken on $(-\pi/2,\pi/2)$, not $(0,\pi)$. The first is clearly $0$. The second on the other hand... – L. F. Mar 07 '13 at 16:25
-
@L.F. Sorry, I missed the problem with the range. – Martin Sleziak Mar 07 '13 at 16:34
-
I was writing up a solution when this post was wrongly marked as duplicate. This integral is not related to that other integral. – Random Variable Mar 07 '13 at 17:02
-
What's the recourse when a thread is incorrectly marked as duplicate? – Random Variable Mar 07 '13 at 17:12
-
@RandomVariable You can write a request in this thread. – Martin Sleziak Mar 07 '13 at 19:43
-
From comments above, it seems, this problem has more elementary solutions without the dilogarithm and legendre chi function. It would be better, if you answer those solutions than just mention in comment. – Mar 09 '13 at 07:07
2 Answers
With some calculations, we obtain
$$ \int_{0}^{\pi} \frac{x \cos x}{1+\sin^2 x} \, dx = 4 \chi_{2}(1-\sqrt{2})$$
where
$$ \chi_{2}(z) = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)^2} $$
is the Legendre chi function of order 2. By exploiting some identities involving dilogarithm, we find that
$$ \chi_{2}(1-\sqrt{2}) = \frac{1}{4} \log^2 (1+\sqrt{2}) - \frac{3}{8}\zeta(2). $$
This gives the answer
$$\int_{0}^{\pi} \frac{x \cos x}{1+\sin^2 x} \, dx = \log^2(1+\sqrt{2}) - \frac{\pi^2}{4}. $$
Some detailed calculations, though written in Korean, can be found in my blog posting.

- 167,468
Here's a more elementary way:$$J=\int_0^\pi\frac{x \cos(x) dx}{1+\sin^2(x)}= \int_0^\frac{\pi}{2} \frac{x \cos(x)dx}{1+\sin^2(x)}+\int_0^\frac{\pi}{2} \frac{-x \sin(x)dx}{1+\cos^2(x)}-\frac{\pi}{2} \int_\frac{\pi}{2}^0 \frac{- \sin (x) dx}{1+\cos^2(x)}$$ $$J=I_1-I_2-\frac{\pi^2}{8}$$
$$I_1=\int_0^\frac{\pi}{2} \frac{ x\cos(x) dx}{1+\sin^2(x)}= \sum_{k \ge 0}(-1)^k \int_0^\frac{\pi}{2} x \cos(x) \sin^{2k}(x)dx$$ $$= \sum_{k \ge 0}(-1)^k \left( \frac{\pi}{2}\frac{1}{2k+1}- \frac{1}{2k+1}\int_0^\frac{\pi}{2} \sin^{2k+1}(x) dx \right)$$ , using the beta function, $$= \sum_{k \ge 0}(-1)^k \left( \frac{\pi}{2}\frac{1}{2k+1}- \frac{1}{2k+1}\frac{\Gamma(k+1)\sqrt{\pi}}{\Gamma(k+1+\frac{1}{2})} \right)$$ , and the Legendre duplication formula, $$= \sum_{k \ge 0}(-1)^k \left( \frac{\pi}{2}\frac{1}{2k+1}- \frac{1}{2k+1}\frac{\Gamma(k+1)^22^{2k+1}}{\Gamma(2k+2)} \right)$$ $$= \sum_{k \ge 0}(-1)^k \left( \frac{\pi}{2}\frac{1}{2k+1}- \frac{1}{(2k+1)^2}\frac{2^{2k+1}}{\binom{2k}{k}} \right)$$ $$= \frac{\pi}{2}\arctan(1)-\sum_{k \ge 0}(-1)^k \frac{1}{(2k+1)^2}\frac{2^{2k+1}}{\binom{2k}{k}} $$
$$\stackrel{\text{Mathematica}}{=} \frac{\pi^2}{8}-\frac{\pi^2}{8}+ \frac{1}{2}\sinh^{-1}(1)^2 $$
$$I_1= \frac{1}{2}\sinh^{-1}(1)^2 $$
$$I_2=\int_0^\frac{\pi}{2} \frac{ x\sin(x) dx}{1+\cos^2(x)}= \sum_{k \ge 0}(-1)^k \int_0^\frac{\pi}{2} x \sin(x) \cos^{2k}(x)dx$$ $$= \sum_{k \ge 0}(-1)^k \frac{1}{2k+1}\int_0^\frac{\pi}{2} \cos^{2k+1}(x)dx$$ $$= \sum_{k \ge 0}(-1)^k \frac{1}{2k+1}\int_0^\frac{\pi}{2} \sin^{2k+1}(x)dx$$ $$I_2=\frac{\pi^2}{8}- \frac{1}{2} \sinh^{-1}(1)^2$$
Thus
$$J=\sinh^{-1}(1)^2- \frac{\pi^2}{4}.$$

- 6,353
-
1The Mathematica result follows from the fact that $~\displaystyle\sum_{n=1}^\infty\frac{(2x)^{2n}}{n^2\displaystyle{2n\choose n}} ~=~ 2\arcsin^2x.~$ – Lucian Jan 16 '17 at 19:35