(edited for complement of some critical steps)
I think your assumption actually is If $g(x),h(x)$ are continuous, and $h(x)$ is periodic function with a period $T$.
I will give a hint under this assumption (some details may not be so strict), let
$$\widetilde h(x)=h(x)-\frac1{T} \int_0^{T}{h(t){\text d}t}$$
you will get
$$\int_0^{T}{\widetilde h(x){\text d}x}=\int_0^{T}{h(x){\text d}x}-\int_0^{T}{\left( \frac1{T}\int_0^{T}{h(t){\text d}t}\right){\text d}x}=0$$
so you just need to prove
$$\lim_{n\to \infty}\int_0^{T}{g(x)\widetilde h(nx){\text d}x}=\left(\frac1{T}\int_0^{T}\widetilde h(x){\text d}x\right)\left(\int_0^{T}{g(x){\text d}x}\right)=0$$
let $t=nx$ (here I assume $n$ is any positive real number), where $[n]$ means the integer part of $n$ and $a=T(n-[n])<T$
$$\begin{aligned}
\int_0^{T}{g(x)\widetilde h(nx){\text d}x}
& = \frac1{n} \int_0^{[n]T+a}{g(t/n)\widetilde h(t){\text d}t} \\
& = \frac1{n} \sum_{k=0}^{[n]} \int_{kT}^{(k+1)T}{g(t/n)\widetilde h(t){\text d}t} + \frac1{n} \int_{[n]T}^{[n]T+a} {g(t/n)\widetilde h(t){\text d}t}
\end{aligned}$$
the continuity of $g(x)$ suggests that $g(t/n)$ in the $k$th period should almost performance as a constant when $n\to\infty$, thus for any $k$
$$\int_{kT}^{(k+1)T}{g(t/n)\widetilde h(t){\text d}t} \to g(t_{k}) \int_{kT}^{(k+1)T}{\widetilde h(t){\text d}t} = 0$$
as well notice that $g(x),h(x)$ are continuous, which means they are bounded in the period, assume $|g(x)|\le G$, $|\widetilde h(x)|\le H$
$$\frac1{n} \left| \int_{[n]T}^{[n]T+a} {g(t/n)\widetilde h(t){\text d}t} \right| \le \frac1{n} \int_{[n]T}^{[n]T+a} {|g(t/n)||\widetilde h(t)|{\text d}t} \le \frac{G}{n}\int_0^{a}{|\widetilde h(t)|{\text d}t} \le \frac{aGH}{n} \to 0$$
just for curiosity, in general:
If $h(x)$ is Lebesgue measurable and periodic in $\mathbb R$, $I$ is any interval, $g(x) \in \mathcal L(I)$, we have
$$\lim_{|\lambda| \to +\infty}\int_I {g(x)h(\lambda x){\text d}x}=\left(\frac1{T}\int_0^{T}h(x){\text d}x\right)\left(\int_I{g(x){\text d}x}\right)$$
under the meaning of Lebesgue integration.