Prove that $\sqrt{5.5}$ is irrational
My attempt:
Suppose $$\sqrt{5.5}=\frac p q\bigg/\quad()^2$$
$$\Longrightarrow 5.5=\frac{p^2}{q^2}\quad \text{gcd}(p,q)=1$$
$$\Longrightarrow q^2 \cdot 5.5=p^2$$
$$\Longrightarrow q\mid p^2\Longrightarrow \text{gcd}(q,p^2)\ge q$$
$$\Longrightarrow q\mid p\Longrightarrow \text{gcd}(q,p)\ge q$$
$$\Longrightarrow q=1$$
and also
$$p\mid q^2\Longrightarrow p\mid q\Longrightarrow p\mid 1 \Longrightarrow p=1$$
$$\Longrightarrow 1=1\cdot5.5$$
Сontradiction.
Is my attempt correct? If not how can I prove that?