I have no idea how to do this.
To find the minimal polynomial of say $\sqrt2 + \sqrt3$, we need to find the monic polynomial $p \in \mathbb Q$ (correct if I am wrong but monic polynomial is when the coefficient of the highest degree term is $1$) of the smallest possible degree such that $\sqrt2 + \sqrt3$ is a root of $p$.
If we let $u=\sqrt2 + \sqrt3$ then $u ^2 = 5+ 2 \sqrt6 \iff u^2 - 5 = 2 \sqrt6 $, then $(u^2 - 5)^2=24 \iff u^4 -10u^2 +1=0$
All I did was keep squaring until all of the irrational terms go away. But what next? Am I doing this correctly and what do we do next if I am?