The following corollary of Krasner´s Lemma says:
Let k be a global field and p a prime of k. Then $(\overline{k})_p=\overline{k_p}$. Im wondering if $(\overline{k})_p$ means the completion of $\overline{k}$ because i know that $\overline{\mathbb{Q}_p}$ is not complete. So i think it means
$\bigcup L_{ip}$ with the $L_{ip}$ ranging over all finite extensions of k. In particular $\bigcup L_{ip}$ doesn´t need to be complete. Am i correct with that? Thx for any help given!
You can find the corollary for example in Neukirch´s cohomology of number fields, 8.1.5.