Let $\alpha = a + b \sqrt{d} \in \mathbb{Q} \left(\sqrt{d} \right) = \{a+b \sqrt{d}:a,b \in \mathbb{Q} \}.$
The minimal polynomial $m(x)$ of an algebraic number $\alpha \in \mathbb{C}$ is the monic polynomial of smallest degree, with coefficients in $\mathbb{Q}$ such that $m(\alpha) = 0.$ How do we find the minimal polynomial of $\alpha = a + b \sqrt{d}$ over $\mathbb{Q}$?