Consider a (locally trivial) fiber bundle $F\to E\overset{\pi}{\to} B$, where $F$ is the fiber, $E$ the total space and $B$ the base space. If $F$ and $B$ are compact, must $E$ be compact?
This certainly holds if the bundle is trivial (i.e. $E\cong B\times F$), as a consequence of Tychonoff's theorem. It also holds in all the cases I can think of, such as where $E$ is the Möbius strip, Klein bottle, a covering space and in the more complicated case of $O(n)\to O(n+1)\to \mathbb S^n$ which prompted me to consider this question. I am fairly certain it holds in the somewhat more general case where $F,B$ are closed manifolds. However, I can't seem to find a proof of the general statement. My chief difficulty lies in gluing together the local homeomorphisms to transfer finite covers of $B\times F$ to $E$. Any insight would be appreciated.