I need to show that Dihedral group $D_n$ is supersolvable.
My Approach : I think the existence of a normal chain $\{e\} = G_0 \leqslant G_1 \leqslant ... \leqslant G_n = G$ satisfying following
$G_i \unlhd G$ $\forall i$
$G_i / G_{i-1}$ cyclic
So I claim that ${e} \subset \left<r\right> \subset D_n$ satisfies the conditions for supersolvable ..
so I denote $C_n = \left<r\right>$ a cyclic group generated by $r$ which is a subgroup of $D_n$
- Need to show that $C_n \unlhd D_n$ so let $g \in D_n$ so $g=s^kr^m$ where $k=0 $ or $k=1$. Now $gr^lg^{-1} = (s^kr^m)r^l (s^kr^m)^{-1}$ here $r^l \in C_n$ thus $gr^lg^{-1} = (s^kr^m)r^lr^{-m}s^{-k} = s^kr^ls^{-k}$. Now if $k=0$ then $gr^lg^{-1} = r^l$ thus proved to be normal else for $k=1$ then $gr^lg^{-1} = sr^ls^{-1} = r^{-l} \in C_n$ thus proved to be normal.
Now I am stuck with how to show that $D_n / C_n $ is cyclic Also not sure if the above part s correct.. Please help