Provide details for the following alternative proof that if $u \in H^1(U)$, then $$Du = 0 \text{ a.e. } \, \text{ on the set } \{u=0\}. $$ Let $\phi$ be a smooth, bounded and nondecreasing function, such that $\phi'$ is bounded and $\phi(z)=z$ if $|z| \le 1$. Set $$u^\epsilon(x) := \epsilon \phi(u/\epsilon).$$ Show that $u^\epsilon \rightharpoonup 0$ weakly in $H^1(U)$ and therefore $$\int_U Du^\epsilon \cdot Du \, dx = \int_U \phi'(u/\epsilon) |Du|^2 \, dx \to 0.$$ Employ this observation to finish the proof.
PDE by Evans, 2nd edition: Chapter 5, Exercise 19
Here is my work so far. I tried what I can; are there any errors in this?
As $\epsilon \to 0$, \begin{align} \|u^\epsilon\|_{H^1(U)} &:= \|u^\epsilon \|_{L^2(U)} + \|D u^\epsilon \|_{L^2(U)} \\ &= \left\|\epsilon \phi\left(\frac u{\epsilon} \right) \right\|_{L^2(U)}+\|\phi'\left(\frac u{\epsilon} \right) Du \|_{L^2(U)} \\ &\le \left\|C \epsilon \frac u{\epsilon} \right\|_{L^2(U)} + \left\|C \cdot Du \right\|_{L^2(U)} \\ &\le C(\left\| u \right\|_{L^2(U)} + \left\| Du \right\|_{L^2(U)}). \end{align} Hence, $u^\epsilon \rightharpoonup 0$ weakly in $H^1(U)$. Therefore, at $u=0$, $$\require{cancel} \int_U \left. \cancelto{1}{\phi'(0/\epsilon)} |Du|^2 \right\vert_{u=0}\, dx \to 0$$ gives $\int_U \left. |Du|^2 \right\vert_{u=0} \, dx \to 0$. Hence, $\left. Du \right\vert_{u=0} =0$ a.e., or $Du=0$ a.e. on the set $\{u=0\}$.