Note that $L$ is nothing but the adjoint of the unweighted shift $S$ defined by $$S(x_1,x_2,...):=(0,x_1,x_2,...),~(x=(x_1,x_2,...)\in H).$$
It is known that the spectrum of $S$ is the closed unit disc $\overline{\Bbb{D}}$, and so $$\sigma(L)=\overline{\sigma(L^*)}=\overline{\sigma(S)}=\overline{\Bbb{D}}.$$
If you are not familiar with shit operators, you may argue as follows. Note that $$\|Lx\|^2=\sum\limits_{k>1}{|x_k|^2}\leq \|x\|^2=\sum\limits_{k>0}{|x_k|^2}$$
for all $x=(x_1,x_2,...)\in H$. Hence, $\|L\|\leq1$ but since $$\|L(0,1,0,...)\|=\|(1,0,0,...)\|=1,$$
we see that $\|L\|=1$ and $$(*)~~~~~~~~~~~~~~~~\sigma(L)\subset\{\lambda\in\Bbb{C}:|\lambda|\leq\|L\|=1\}=\overline{\Bbb{D}}.$$
Now, let us solve $$(L-\lambda I)(x_1,x_2,...)=0.$$
This implies that $x_2-\lambda x_1=0$, $x_3-\lambda x_2=0$, $x_4-\lambda x_3=0$, ... Therefore, $x_2=\lambda x_1$, $x_3=\lambda x_2=\lambda^2x_1$, $x_4=\lambda x_3=\lambda^3 x_1=$, ... So, for any $n$, we have
$$x_n=\lambda^{n-1}x_1.$$
Take $x_1=1$, to see that
$$(L-\lambda I)(1,\lambda,\lambda^2,\lambda^3,...)=0.$$
Then the only thing that we need to check is when $(1,\lambda,\lambda^2,\lambda^3,...)$ is in $H$. This holds true only if $$\sum_{k\geq 0}|\lambda|^{2k}=\|(1,\lambda,\lambda^2,\lambda^3,...)\|^2<\infty.$$
But the radius of convergence of this series is 1, and
\begin{equation}
\Bbb{D}=\{\lambda:|\lambda|<1\}\subset\sigma(L).
\end{equation}
Since $\sigma(L)$ is compact (in particular closed), we get that
\begin{equation}
(**)~~~~~~~~~~~~~~~~\overline{\Bbb{D}}=\{\lambda:|\lambda|\leq1\}\subset\sigma(L).
\end{equation}
Clearly, by (*) and (**), we have
\begin{equation}
\sigma(L)=\overline{\Bbb{D}}=\{\lambda:|\lambda|\leq1\}.
\end{equation}