In this post you can find a proof of :
$\vdash (∀xβ→α)↔∃x(β→α)$, if $x$ is not free in $\alpha$.
The proof uses the axioms you have listed.
In the above theorem we replace $\beta$ with $Px$ and $\alpha$ with $\forall xPx$. Clearly, $x$ is not free in $\forall xPx$: thus, the proviso of the theorem applies :
$(∀xPx→∀xPx)↔∃x(Px→∀xPx)$.
The LHS is a tautology; thus, by modus ponens :
$\vdash ∃x(Px→∀xPx)$.
We can prove it directly with the above axioms and rules (see Herbert Enderton, A Mathematical Introduction to Logic (2nd - 2001)) :
(1) $\lnot Px \vdash Px \rightarrow \forall x Px$ --- by $\vDash_{TAUT} \lnot \phi \rightarrow (\phi \rightarrow \psi)$
(2) $\lnot Px \vdash \exists x (Px \rightarrow \forall x Px)$ --- from (1) by the "derived rule" : $\varphi_t^x \rightarrow \exists x \varphi$ [provable from Ax.2] and modus ponens
(3) $\vdash \lnot Px \rightarrow \exists x (Px \rightarrow \forall x Px)$ --- from (2) by Deduction Theorem
(4) $\lnot \exists x (Px \rightarrow \forall x Px) \vdash \lnot Px \rightarrow \lnot \exists x (Px \rightarrow \forall x Px)$ --- by $\vDash_{TAUT} \phi \rightarrow (\psi \rightarrow \phi)$
(5) $\lnot \exists x (Px \rightarrow \forall x Px) \vdash Px$ --- from (3) and (4) by $\vDash_{TAUT} (\lnot \phi \rightarrow \lnot \psi) \rightarrow ((\lnot \phi \rightarrow \psi) \rightarrow \phi)$
(6) $\lnot \exists x (Px \rightarrow \forall x Px) \vdash \forall x Px$ --- from (5) by GENERALIZATION THEOREM [page 117] : $x$ is not free in the assumption
(7) $\lnot \exists x (Px \rightarrow \forall x Px) \vdash Px \rightarrow \forall x Px$ --- from (6) by $\vDash_{TAUT} \phi \rightarrow (\psi \rightarrow \phi)$
(8) $\lnot \exists x (Px \rightarrow \forall x Px) \vdash \exists x(Px \rightarrow \forall x Px)$ --- From (7) by the "derived rule" of (2) and modus ponens
(9) $\vdash \lnot \exists x (Px \rightarrow \forall x Px) \rightarrow \exists x(Px \rightarrow \forall x Px)$ --- from (9) by Deduction Theorem
(10) $\vdash \lnot \exists x (Px \rightarrow \forall x Px) \rightarrow \lnot \exists x(Px \rightarrow \forall x Px)$ --- by $\vDash_{TAUT} \phi \rightarrow \phi$
(11) $\vdash \exists x (Px \rightarrow \forall x Px)$ --- from (9) and (10) by $\vDash_{TAUT} (\lnot \phi \rightarrow \lnot \psi) \rightarrow ((\lnot \phi \rightarrow \psi) \rightarrow \phi)$