According to Rudin (Principles of Mathematical Analysis) Riemann integrable functions are defined for bounded functions.For every bounded function defined on a closed interval $[a,b]$ Lower Riemann Sum and Upper Riemann sum are bounded .More mathematically $m(b-a) \leq L(P,f) \leq U(P,f) \leq M(b-a)$ where $m,M$ are lower and upper bounds of the function $f$ respectively. Rudin says that Upper Riemann Sum and Lower Riemann sum always exists,but their equality is the question.
But while searching for non-examples we need to find a bounded function whose upper sum not equal to lower sum.One of the book is given example as $\frac{1}{x}$ in the interval $[0,b]$. But this function is not bounded. Can we use $\sin(\frac{1}{x})$ in the interval $[0,1]$. Explain how?