We show that $x^2+y^2-1$ is irreducible in $\Bbb{Q}[x, y]$.
It is the Exercise 9.4.11 in Dummit and Foote's Abstract Algebra.
We view $x^2+y^2-1=y^2+(x^2-1)$ as a polynomial in $(\Bbb{Q}[x])[y]$.
Case 1.
$y^2+(x^2-1)=[f(x)y+g(x)][h(x)y+i(x)]$.
\begin{eqnarray*}
&\text{If}& y^2+(x^2-1)\\
&=& [f(x)y+g(x)][h(x)y+i(x)] \\
&=& f(x)h(x)y^2+[g(x)h(x)+f(x)i(x)]y+g(x)i(x)\\
&\Rightarrow& f(x)h(x)=1\\
&\Rightarrow& f(x)=r\text{ and }h(x)=1/r\\
&\stackrel{g(x)h(x)+f(x)i(x)=0}{\Rightarrow}& (1/r)g(x)+ri(x)=0\\
&\Rightarrow& g(x)+r^2 i(x)=0\\
&\Rightarrow& g(x)=-r^2 i(x)\\
&\stackrel{g(x)i(x)=x^2-1}{\Rightarrow}& -r^2 i(x)^2=x^2-1\\
&\Rightarrow& r^2 i(x)^2=1-x^2\\
&\stackrel{2=\deg{1-x^2}=2\deg{ri(x)}}{\Rightarrow}& \deg{r i(x)}=1\\
&\stackrel{ri(x)=ax+b}{\Rightarrow}& (ax+b)^2=1-x^2\\
&\Rightarrow& a^2=-1, \text{ which is impossible because }a\in \Bbb{Q}.
\end{eqnarray*}
Case 2.
$y^2+(x^2-1)=f(x)[g(x)y^2+h(x)y+i(x)]$.
If $y^2+(x^2-1)=f(x)[g(x)y^2+h(x)y+i(x)]$,
then $f(x)g(x)=1$ and $f(x)$ is a unit.
Note.
Case 2 is necessary because we DON'T have the implication:
If $f(x)$ can't be written as a product of two polynomials $g(x)$ and $h(x)$
whose degree less than $\deg{f(x)}$,
then $f(x)$ is irreducible.
For instance, $f(x)=2(x+1)\in \Bbb{Z}[x]$.