HINT:
For $a$ fixed
$\int_{-\infty}^\infty\exp\left(-\frac{(x^2+sx-b)^2}{a x^2}\right)\ dx$
is constant in $s$ and $b\ge 0$.
$\bf{Added:}$
The function $\frac{x^2 + s x - b}{x} = x - \frac{b}{x} + s$ invariates the Lebesgue measure as @achille hui: showed in his answer.
Let $n \in \mathbb{N}$ $\alpha_1$, $\ldots$, $\alpha_n$ distinct real numbers, $\rho_1$, $\ldots$, $\rho_n$ $ >0$ and $\beta \in \mathbb{R}$. The function
$$\phi(x) = x - \sum_{i=1}^n \frac{\rho_i}{x- \alpha_i} -\beta $$
invariates the Lebesgue measure on $\mathbb{R}$.
Lemma: For any $a \in \mathbb{R}$ the equation
\begin{eqnarray*}
x- \sum_{i=1}^n \frac{\rho_i}{x- \alpha_i} -\beta = u
\end{eqnarray*}
has $n+1$ distinct real root with sum $u + \sum_i \alpha_i + \beta $.
Use Viete.
Lemma: Let $I$ an interval in $\mathbb{R}$ of length $l$. Then the preimage $\phi^{-1} (I)$ is a union of $n+1$ disjoint intervals of total length $l$.
Consequence:
$$\int_{\mathbb{R}} (f\circ \phi)\, d\,\mu = \int_{\mathbb{R}} f\ d\mu$$
Composing two rational maps that invariate the measure gets a third one. They will have singularities in general.
For $f(x) = e^{-\frac{x^2}{a}}$ the composition $f (\phi(x))$ is still smooth due to the rapid decay at $\infty$ of $e^{-\frac{x^2}{a}}$.