(a) Yes, you need to show first that $\langle x_n\rangle_n$ is convergent; once you know that, your argument shows that its limit must be $\sqrt a$. You might want to look first at the discussion below for (b).
(b) Yes, it does make a difference whether $n$ is odd or even. Calculate the first few values: $$x_1=1, x_2 = 2,x_3=\frac32,x_4=\frac53,x_5=\frac85,x_6=\frac{13}8.$$ Note that the sequence is oscillating: the odd-numbered terms are low, and the even-numbered terms are high. On the other hand, $x_1<x_3<x_5$, and $x_2>x_4>x_6$. This suggests that the sequence does converge to some limit $x$ in such a way that $$x_1<x_3<x_5<\dots <x<\dots<x_6<x_4<x_2\;.$$
If you can show that $x_{2n+1}<x_{2n+3}<x_2$ for all $n\ge 0$, you’ll know that the sequence of odd-numbered is monotone increasing and bounded above, which implies that it converges to some $x_{\text{odd}}$. Similarly, if you can show that $x_1<x_{2n+2}<x_{2n}$ for every $n\ge 1$, you’ll know that the sequence of even-numbered terms is monotone decreasing and bounded below, which implies that it converges to some $x_{\text{even}}$. Then you’ll have to find a way to show that $x_{\text{odd}}=x_{\text{even}}$.
(By the way, the terms of this sequence are the ratios of consecutive Fibonacci numbers, and their limit is $\varphi = \frac12(1+\sqrt 5)$.)
Added: After some algebra we get $$x_{n+2}=1+\frac1{x_{n+1}}=1+\left(1+\frac1{x_n}\right)^{-1}=\frac{2x_n+1}{x_n+1}$$ and $$x_{n+4}=\frac{5x_n+3}{3x_n+2}\;.$$ Thus,
$$\begin{align*}
x_{n+4}<x_{n+2}&\text{ iff } \frac{5x_n+3}{3x_n+2}<\frac{2x_n+1}{x_n+1}\\
&\text{ iff }5x_n^2+8x_n+3<6x_n^2+7x_n+2\\
&\text{ iff }0<x_n^2-x_n-1\\
&\text{ iff }2x_n+1<x_n^2+x_n\\
&\text{ iff }x_{n+2}<x_n
\end{align*}\tag{1}$$
Since $x_4=\frac53<2=x_2$, it follows by induction from $(1)$ that $\langle x_{2n}:n\in\mathbb{Z}^+\rangle$ is a decreasing sequence. The calculation in $(1)$ remains valid if all of the inequalities are turned around, and $x_3=\frac32>1=x_1$, so essentially the same induction shows that $\langle x_{2n-1}:n\in\mathbb{Z}^+\rangle$ is a decreasing sequence.
Now let $\varphi=\frac12(1+\sqrt 5)$, the positive zero of $x^2-x-1$. Note that if $x$ is a positive real number, $x>\varphi$ iff $x^2-x-1>0$. Moreover,
$$\begin{align*}
x_{n+2}^2-x_{n+2}-1&=\left(\frac{2x_n+1}{x_n+1}\right)^2-\frac{2x_n+1}{x_n+1}-1\\
&=\frac{x_n^2-x_n-1}{(x_n+1)^2}\;,
\end{align*}$$
and $(x_n+1)^2>0$, so $x_{n+2}^2-x_{n+2}-1$ and $x_n^2-x_n-1$ have the same algebraic sign, and therefore $x_{n+2}>\varphi$ iff $x_n>\varphi$. Now $\varphi\approx 1.618$, so $x_2>\varphi$, and it follows by induction that $x_{2n}>\varphi$ for every $n\in\mathbb{Z}^+$.
Similarly, $x<\varphi$ iff $x^2-x-1<0$ if $x$ is a positive real, and $x_1=1<\varphi$, so the same induction shows that $x_{2n-1}<\varphi$ for every $n\in\mathbb{Z}^+$. Thus, $$x_1<x_3<x_5<\dots <\varphi<\dots<x_6<x_4<x_2\;.$$ In particular, the sequence of odd-numbered terms is increasing and bounded above by $\varphi$, and the sequence of even-numbered terms is decreasing and bounded below by $\varphi$, so both have limits. This doesn’t yet prove that both subsequences have the same limit, but we’re getting there.
There are several ways to finish the job. One is to let $L$ be the limit of one of the subsequences, say the even-numbered one. Then $$L=\lim_{n\to\infty}x_{2n+2}=\lim_{n\to\infty}\frac{2x_{2n}+1}{x_{2n}+1}=\frac{2L+1}{L+1}\;,$$ so $L^2+L=2L+1$, $L^2-L-1=0$, and $L=\varphi$ (since the negative solution is plainly wrong). A similar calculation takes care of the other subsequence.
Another approach is to consider $$\left|\frac{x_{n+2}-x_{n+1}}{x_{n+1}-x_n}\right|=\left|\frac{\frac{5x_n+3}{3x_n+2}-\frac{2x_n+1}{x_n+1}}{\frac{2x_n+1}{x_n+1}-x_n}\right|=\left|\frac1{3x_n+2}\right|=\frac1{3x_n+2}<\frac12,$$ since the $x_n$ are all positive. In other words, the gap between consecutive terms shrinks at least geometrically and therefore tends to $0$, so the two subsequences must actually have the same limit, and it must satisfy $L=\frac1{L+1}$.