1

For a merely decreasing positive sequence it fails: $$f_n:=\frac{1}{n}\chi_{[n,\infty)}:\quad\int f_n\mathrm{d}\lambda=\infty\nrightarrow0$$

For a dominated decreasing positive sequence it holds: $$0\leq f_n\downarrow f:\quad\int f_n\mathrm{d}\mu\to \int f\mathrm{d}\mu\quad(f_n\in\mathcal{L})$$ How to prove this via Beppo-Levi?

C-star-W-star
  • 16,275

1 Answers1

1

Since my comment seems to answer the question, let me repeat the argument as an answer...

Denote for shorthand: $\bar{f}:=\sup_n f_n$

By measurability for positive functions one has:

$$\int f_n \mathrm{d}\mu = \int \bar{f} \mathrm{d}\mu + \int (\bar{f}-f_n) \mathrm{d}\mu$$ $$\int f \mathrm{d}\mu = \int \bar{f} \mathrm{d}\mu + \int (\bar{f}-f) \mathrm{d}\mu$$

By monotone convergence one has:

$$\int(\bar{f}-f_n)\mathrm{d}\mu\to\int(\bar{f}-f)\mathrm{d}\mu$$

It remains to observe that all integrals are finite to conclude: $$\int f_n\mathrm{d}\mu=\int\bar{f}\mathrm{d}\mu-\int(\bar{f}-f_n)\mathrm{d}\mu\to\int\bar{f}\mathrm{d}\mu-\int(\bar{f}-f)\mathrm{d}\mu=\int f\mathrm{d}\mu$$

C-star-W-star
  • 16,275
PhoemueX
  • 35,087