Applying the Copson's inequality, I found: $$S=\displaystyle\sum_{k=1}^{\infty }\left(\Psi^{(1)}(k)\right)^2\lt\dfrac{2}{3}\pi^2$$ where $\Psi^{(1)}(k)$ is the polygamma function. Is it known any sharper bound for the sum $S$? Thanks.

- 17,627

- 10,546
-
You can try this bound $\zeta(2)+2\zeta(3)$. – Mhenni Benghorbal Jul 30 '14 at 16:25
-
I have changed the formatting of the title so as to make it take up less vertical space -- this is a policy to ensure that the scarce space on the main page is distributed evenly over the questions. See here for more information. Please take this into consideration for future questions. Thanks in advance. – GNUSupporter 8964民主女神 地下教會 Mar 12 '18 at 16:56
4 Answers
First, we have
$$
\begin{align}
\psi'(n)
&=\sum_{k=0}^\infty\frac1{(k+n)^2}\\
&=\sum_{k=n}^\infty\frac1{k^2}\tag{1}
\end{align}
$$
Then
$$
\begin{align}
\sum_{n=1}^\infty\psi'(n)^2
&=\sum_{n=1}^\infty\sum_{j=n}^\infty\frac1{j^2}\sum_{k=n}^\infty\frac1{k^2}\tag{2}\\
&=\sum_{n=1}^\infty\left(\sum_{j=n}^\infty\frac1{j^4}+2\sum_{j=n}^\infty\sum_{m=1}^\infty\frac1{j^2}\frac1{(j+m)^2}\right)\tag{3}\\
&=\sum_{j=1}^\infty\sum_{n=1}^j\frac1{j^4}+2\sum_{j=1}^\infty\sum_{m=1}^\infty\sum_{n=1}^j\frac1{j^2}\frac1{(j+m)^2}\tag{4}\\
&=\sum_{j=1}^\infty\frac1{j^3}+2\sum_{j=1}^\infty\sum_{m=1}^\infty\frac1{j(j+m)^2}\tag{5}\\
&=\zeta(3)+2\sum_{n=1}^\infty\frac{H_{n-1}}{n^2}\tag{6}\\
&=\zeta(3)-2\zeta(3)+2\sum_{n=1}^\infty\frac{H_n}{n^2}\tag{7}\\[9pt]
&=\zeta(3)-2\zeta(3)+4\zeta(3)\tag{8}\\[18pt]
&=3\zeta(3)\tag{9}
\end{align}
$$
Explanation:
$(2)$: use $(1)$
$(3)$: first sum covers $j=k$ the other $j\lt k$ and $j\gt k$
$(4)$: change order of summation
$(5)$: sum in $n$
$(6)$: $n=j+m$ and $j=n-m$ and sum in $m$
$(7)$: $H_{n-1}=H_n-\frac1n$
$(8)$: equation $(14)$ of this answer with $q=2$
$(9)$: add
You may evaluate your series in closed form.
Here are the steps.
Recall the following standard representation for the digamma function: $$ \psi(x) = -\gamma+\int_0^1 \frac{1 - t^{x-1}}{1 - t}{\rm{d}} x, \quad x>0, $$ giving, by differentiation, $$ \psi'(x) = -\int_0^1 \frac{t^{x-1} \ln t}{1 - t}{\rm{d}} x, \quad x>0. $$ One may deduce $$ \left(\psi'(k)\right)^2 = \int_0^1\int_0^1 \frac{(uv)^{k-1} \ln u\ln v}{(1 - u)(1-v)}{\rm{d}}u \:{\rm{d}} v $$ and $$ \sum_{k=1}^\infty\left(\psi'(k)\right)^2 = \int_0^1 \! \!\int_0^1 \frac{\ln u\ln v}{(1-uv)(1 - u)(1-v)}{\rm{d}} u\:{\rm{d}} v $$ By partial fraction decomposition and successive integrations involving $\text{Li}_{2}(\cdot)$, you arrive at $$ \sum_{k=1}^\infty\left(\psi'(k)\right)^2 = 3\zeta(3) = 3.60617070947878285619921 \cdots. $$

- 120,989
-
4
-
2
-
Please correct me if I am wrong, but shouldn't the first line be $\psi(x)=-\gamma+\int^1_0\frac{1-t^{x-1}}{1-t}{\rm d}x$ instead? Of course, this doesn't affect the accuracy of your answer in any way. :) – SuperAbound Aug 31 '14 at 12:17
-
-
Continuing from Olivier Oloa's answer,
$$ \begin{align} \sum_{k=1}^{\infty} \big(\psi^{(1)} (k) \big)^{2} &= \int_{0}^{1} \int_{0}^{1} \frac{\ln u \ln v}{(1-uv)(1-u)(1-v)} \ du \ dv \\ &= \int_{0}^{1} \frac{\ln v}{(1-v)^{2}} \int_{0}^{1} \left(\frac{\ln u}{1-u} - \frac{v \ln u}{1-vu} \right) \ du \ dv \\ &= \int_{0}^{1} \frac{\ln v}{(1-v)^{2}} \left( \int_{0}^{1} \frac{\ln u}{1-u} \ du - v \int_{0}^{1} \frac{\ln u}{1-vu} \ du\right) \ dv \end{align}$$
where $$ \int_{0}^{1} \frac{\ln u}{1-u} \ du = \int_{0}^{1} \frac{\ln (1-w)}{w} = -\text{Li}_{2}(1) = -\zeta(2) $$
and
$$ \int_{0}^{1} \frac{\ln u}{1-vu} \ du = - \frac{1}{v} \ln(1-vu) \ln u \Bigg|^{1}_{0} + \frac{1}{v} \int_{0}^{1} \frac{\ln (1-vu)}{u} \ du = - \frac{\text{Li}_{2}(v)}{v} .$$
Therefore,
$$ \sum_{k=1}^{\infty} \big(\psi^{(1)} (k) \big)^{2} = \int_{0}^{1} \frac{\ln v}{(1-v)^2} \Big(\text{Li}_{2}(v) - \zeta(2) \Big) \ dv .$$
Then integrating by parts,
$$ \begin{align} &= \big(\text{Li}_{2}(v) - \zeta(2) \big) \left(\ln (1-v) + \frac{v \ln v}{1-v} \right)\Bigg|^{1}_{0} + \int_{0}^{1} \frac{\ln^{2}(1-v)}{v} \ dv + \int_{0}^{1} \frac{\ln(1-v) \ln v}{1-v} \ dv \\ &= \int_{0}^{1} \frac{\ln^{2}(1-v)}{v} \ dv + \int_{0}^{1} \frac{ \ln(1-v) \ln v}{1-v} \ dv \end{align}$$
where $$ \begin{align} \int_{0}^{1} \frac{\ln^{2}(1-v)}{v} \ dt &= \ln^{2}(1-v)\ln v \Bigg|^{1}_{0} + 2 \int_{0}^{1} \frac{\ln(1-v) \ln v}{1-v} \ dv \\ &= 2 \int_{0}^{1} \frac{ \ln(1-v) \ln v}{1-v} \ dv . \end{align} $$
Therefore, $$ \begin{align} \sum_{k=1}^{\infty} \big(\psi^{(1)} (k) \big)^{2} &= 3 \int_{0}^{1} \frac{\ln(1-v) \ln v}{1-v} \ dv \\ &= -3 \int_{0}^{1} \ln v \sum_{n=1}^{\infty} H_{n}v^{n} \ dv \\ & = -3 \sum_{n=1}^{\infty} H_{n} \int_{0}^{1} v^{n} \ln v \ dv \\ &= 3 \sum_{n=1}^{\infty} \frac{H_{n}}{(n+1)^{2}} \\ &= 3 \left(\sum_{n=1}^{\infty} \frac{H_{n+1}}{(n+1)^{2}} - \sum_{n=1}^{\infty} \frac{1}{(n+1)^{3}} \right) \\ &= 3 \left( \sum_{n=1}^{\infty} \frac{H_{n}}{n^{2}} -1 - \zeta(3) + 1 \right) \\ &= 3 \big(2 \zeta(3) - \zeta(3) \big) \tag{1} \\ &= 3 \zeta(3) .\end{align} $$
$ $
$(1)$ Generalized Euler sum $\sum_{n=1}^\infty \frac{H_n}{n^q}$

- 42,026