Here is a generating function method that usually works (not elegant in this case, though).
First of all, remember the infinite geometric progression formula (we'll use it multiple times):
$$|x|<1\implies 1+x+x^2+x^3+\cdots=\sum_{n=0}x^n=\frac{1}{1-x}$$
Let $G(x)=\sum_{n=0}f(n)x^n$. The coefficient of the $x^n$ term is $f(n)$.
Multiply both sides by $x^n$:
$$f(n)x^n=2f(n-1)x^n+kx^n$$
Now, this equation holds $\forall n\ge 1, n\in\mathbb N$, so we add up all the equations that we can create by letting $n=1, n=2$, etc.
$$\begin{align}
\sum_{n=1}f(n)x^n &=\sum_{n=1}2f(n-1)x^{n}+k\sum_{n=1}x^n
\\
\iff G(x)-f(0) &=2xG(x)+k\left(\frac{1}{1-x}-1\right)
\\
\iff G(x)&=\frac{k}{(1-x)(1-2x)}+\frac{f(0)-k}{1-2x}
\end{align}$$
Let $\left[ G(x) \right]_{x^n}$ denote the coefficient of the $x^n$ term of the power series $G(x)$.
Note that we have the following facts (we'll use them):
$$\begin{align}\left[ \frac{1}{1-ax} \right]_{x^n}&=a^n
\\
\left[ \frac{1}{(1-ax)(1-bx)} \right]_{x^n}&=\sum_{j=0}^{n}a^{j}b^{n-j}\end{align}$$
Thus we have:
$$\begin{align}
\left[ G(x) \right]_{x^n}&=\left[ \frac{k}{(1-x)(1-2x)} \right]_{x^n}+\left[ \frac{f(0)}{1-2x} \right]_{x^n}-\left[ \frac{k}{1-2x} \right]_{x^n}
\\\\
&=k\sum_{j=0}^{n}1^j2^{n-j}+f(0)\cdot 2^n-2^nk
\\\\
&=k\cdot (1+2^1+2^2+2^3+\cdots+2^n)+f(0)\cdot 2^n-2^nk
\\\\
&=k\cdot \frac{2^{n+1}-1}{2-1}+f(0)\cdot 2^n-2^nk
\\\\
&=2^{n+1}k-k+f(0)\cdot 2^n-2^nk
\\\\
&=2^n(2k-k)+f(0)\cdot 2^n-k
\\\\
&=2^nk+f(0)\cdot 2^n-k
\\\\
&=2^nf(0)+k(2^n-1)
\end{align}$$
I'm adding some other formulas that might help you in the future:
$$\begin{align}\left[ \frac{1}{(1-x)^k}\right]_{x^n}&=\binom{n+k-1}{n}=\left(\binom{k}{n}\right)
\\
\left[(1+x)^k\right]_{x_n}&=\binom{k}{n}\end{align}$$
Here $\left(\binom{k}{n}\right)$ denotes multiset coefficient.
A little note: To show how great this method is (and to give you an exercise to see if you understand the method for some practice), I can say that it can be used to find the closed formula for the $n$'th term of the Fibonacci sequence. The useful form of it is (where $F_0=0$):
$$F_n = \frac{(1 + \sqrt{5})^n - (1 - \sqrt{5})^n}{2^n \sqrt{5}}, \forall n\in\mathbb N_0$$
However, our method at first produces this different form:
$$F_n=\frac{\sum_{j=0}^{n-1}(1+\sqrt{5})^{j}(1-\sqrt{5})^{n-j-1}}{2^{n-1}}, \forall n\in\mathbb N_0$$
Using algebraic manipulations, you can change one to the other. The former formula is more useful because it helps us see the shorter formula that we can have:
$$F_n = \lfloor \frac{(1 + \sqrt{5})^n}{2^n \sqrt{5}} + \frac{1}{2} \rfloor=\lfloor \frac{\phi^n}{\sqrt{5}}+\frac{1}{2} \rfloor, \forall n\in\mathbb N_0$$
This question is about learning how to solve recurrence relations in general, so this may be useful.