One may be curious why one wishes to convert a polynomial ring to a numerical ring. But as one of the most natural number system is integers, and many properties of rings can be easily understood in parallel to ring of integers, I think converting a polynomial ring to a numerical (i.e. integer) ring is useful.
What I mean by converting to a numerical ring is: in the standard ring of integers, $+$ and $\cdot$ are defined as in usual arithmetic. But is there universal way of converting any polynomial/monomial rings such that each object in the ring gets converted to an integer, and $+$ and $\cdot$ can be defined differently from standard integer $+$ and $\cdot$? This definition would be based on integer arithmetic, though.