Hint $\ \,p\,$ prime, $\,p^n\mid e(1\!-\!e)\,\Rightarrow\, p^n\mid e\,$ or $\,p^n\mid 1\!-\!e,\ $ by $\ 1\!-\!e,\, e\,$ coprime, by $\ (1\!-\!e)+ e = 1$
So $\!\bmod p^n$ the only idempotents (roots of $\,e^2\equiv e)\,$ are the trivial idempotents $\,e \equiv 0,1.\,$
So, by CRT [cf, below] $\,e\,$ is idempotent mod $\,2^2 3^2 5^2\iff e \equiv 0,1\,$ mod $\,2^2,3^2,5^2,\,$ e.g.
$\ e \equiv (\color{#c00}1,0,0)\Rightarrow {\rm mod}\ 2^2\!:\ e\equiv \color{#c00}1 \equiv 3^2 5^2 k \equiv \color{#c00}k,\,$ so $\, e = 15^2k = 15^2(1\! +\! 4j)\equiv 225\pmod{\!900}$
So $\,(0,1,1) = 1-e \equiv 1-225 = 901-225 \equiv 676.\,$ Same for other $\,(e_1,e_2,e_2),\ e_i \in \{0,1\}$
Remark $\ $ Idempotents $\!\bmod n\,$ correspond to splittings of $n$ into $\color{#c00}{\rm co}\color{#0a0}{\rm prime}$ factors, e.g. above the idempotent $\,e = 225 = 3^2 5^2\,$ corresponds to the factorization $\,n = \color{#c00}{2^2}\!\times \color{#0a0}{3^2 5^2}\,$ where $\,\color{#c00}{e\equiv 1\pmod{\!2^2}},\,$ $\color{#0a0}{e\equiv 0\pmod{\!3^2 5^2}}.\,$ In fact some integer factorization algorithms work by searching for nontrivial idempotents mod $\,n,\,$ which immediately yield a factorization of $\,n\,$ (generally we can quickly factor $\,n\,$ given any polynomial which has more roots mod $\,n\,$ than its degree, so a nontrivial idempotent (or square-root) $\Rightarrow$ quadratic has $> 2$ roots, which splits $n$).
Generally we can find modular roots of polynomials using CRT as explained below, where above is the special case $f(x) = x^2 -x = x(x-1)$.
By CRT, each combination of a root $\,r_i\,$ mod $\,m\,$ and a root $\,s_j\,$ mod $\,n\,$ corresponds to a unique root $\,t_{ij}\,$ mod $\,mn\,$ i.e.
$$\begin{eqnarray} f(x)\equiv 0\pmod{mn}&\overset{\rm CRT}\iff& \begin{array}{}f(x)\equiv 0\pmod m\\f(x)\equiv 0\pmod n\end{array} \\
&\iff& \begin{array}{}x\equiv r_1,\ldots,r_k\pmod m\phantom{I^{I^{I^I}}}\\x\equiv s_1,\ldots,s_\ell\pmod n\end{array}\\
&\iff& \left\{ \begin{array}{}x\equiv r_i\pmod m\\x\equiv s_j\pmod n\end{array} \right\}_{\begin{array}{}1\le i\le k\\ 1\le j\le\ell\end{array}}^{\phantom{I^{I^{I^I}}}}\\
&\overset{\rm CRT}\iff& \left\{ x\equiv t_{i j}\!\!\pmod{mn} \right\}_{\begin{array}{}1\le i\le k\\ 1\le j\le\ell\end{array}}\\
\end{eqnarray}\qquad\qquad$$