I'm trying to show that if $\operatorname{gcd}(a,b) = 1$, then $\operatorname{gcd}(ab,a+b)=1$.
I've tried to use the gcd properties: $$\operatorname{gcd}(a,b)=1 \implies \operatorname{gcd}(a,a+b)=1\\\operatorname{gcd}(a,b)\implies\operatorname{gcd}(ab,b^2)=b$$ but I got stuck. Any hint will help.