$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\int_{-\infty}^{\infty}{c_{1} \over\pars{1 + c_{2}\,x^{2}}^{5/6}}\,
\cos\pars{x\tau}\,\dd x\,,\qquad c_{1}, c_{2}\mbox{: positive constants.}}$
\begin{align}&\int_{-\infty}^{\infty}{c_{1} \over\pars{1 + c_{2}\,x^{2}}^{5/6}}\,
\cos\pars{x\tau}\,\dd x
=2c_{1}\int_{0}^{\infty}{\cos\pars{x\verts{\tau}} \over\pars{1 + c_{2}\,x^{2}}^{5/6}}\,
\,\dd x
\\[3mm]&={2c_{1} \over c_{2}^{5/6}}\int_{0}^{\infty}
{\cos\pars{x\color{#c00000}{\verts{\tau}}}\over
\bracks{x^{2} + \pars{\color{#c00000}{c_{2}^{-1/2}}}^{2}}^{\color{#c00000}{1/3} + 1/2}}\,\dd x
\end{align}
With the Bessel Function Identity ${\bf 9.6.25}$:
$$
{\rm K}_{\nu}\pars{xz}
={\Gamma\pars{\nu + 1/2}\pars{2z}^{\nu} \over \root{\pi}x^{\nu}}
\int_{0}^{\infty}{\cos\pars{xt} \over \pars{t^{2} + z^{2}}^{\nu + 1/2}}\,\dd t
$$
we'll have
\begin{align}
&\int_{-\infty}^{\infty}{\cos\pars{x\tau} \over\pars{1 + c_{2}\,x^{2}}^{5/6}}\,
\,\dd x
={\root{\pi}\verts{\tau}^{1/3} \over \Gamma\pars{1/3 + 1/2}\pars{2/\root{c_{2}}}^{1/3}}\,
{\rm K}_{1/3}\pars{\verts{\tau}\,{1 \over \root{c_{2}}}}
\end{align}
\begin{align}&\color{#66f}{\large%
\int_{-\infty}^{\infty}{c_{1} \over\pars{1 + c_{2}\,x^{2}}^{5/6}}\,
\cos\pars{x\tau}\,\dd x}
\\[3mm]&=\color{#66f}{\large{c_{1}\root{\pi}\over
\Gamma\pars{5/6}}\,\pars{\verts{\tau}\root{c_{2}} \over 2}^{1/3}
\,{\rm K}_{1/3}\pars{\verts{\tau} \over \root{c_{2}}}}
\end{align}