Note $\ \ \color{#c00}{\alpha+\bar\alpha,\ \alpha\:\!\bar\alpha}\in\Bbb Q\ \Rightarrow\ \color{#0a0}{\alpha^{n}+\bar\alpha^{\:\!n}}\in \Bbb Q\ $ for all $\,n\in\Bbb N\,$ by induction, since
$$ \alpha^{n+1}+\bar\alpha^{\:\!n+1} = (\color{#c00}{\alpha+\bar\alpha})\ (\alpha^n+\bar\alpha^{\:\!n})-\color{#c00}{\alpha\:\!\bar\alpha}\, (\alpha^{n-1}+\bar\alpha^{\:\!n-1})\quad$$
$\begin{align}\alpha = \sqrt[100]{\sqrt3+\!\sqrt2}\\
\bar\alpha = \sqrt[100]{\sqrt3-\!\sqrt2}\end{align}$ $\Rightarrow\,\color{#c00}{\alpha\:\!\bar\alpha} = 1\in\Bbb Q\ $ so $\, \color{#c00}{\alpha + \bar\alpha}\in\Bbb Q\,\Rightarrow\,2\sqrt{3} = \color{#0a0}{\alpha^{100} + \bar\alpha^{100}} \in\mathbb Q\, \Rightarrow\!\Leftarrow$
Generally $\,\alpha+\bar\alpha,\,\alpha\:\!\bar\alpha\in\Bbb Q\Rightarrow f(\alpha,\bar \alpha)\in \Bbb Q\,$ for any symmetric polynomial $f(x,y)\in\Bbb Q[x,y]\,$ since such a polynomial can be written as a polynomial in $\,\alpha+\bar\alpha,\ \alpha\:\!\bar\alpha\,$ with integer coefficients (Fundamental Theorem of Symmetric Polynomials). Above $\,f(x,y) = x^{100}+y^{100}$.
Look up Lucas-Lehmer sequences to learn more about such power sums of algebraic numbers.
:-)
– msh210 Dec 07 '11 at 00:16