I assume you mean to ask: when $x$ is in whole degrees, when is $\sin(x)$ rational?
If $x$ is in whole degrees, then $x^\circ=\pi x/180\text{ radians}=\pi p/q\text{ radians}$, so we wish to find all rational multiples of $\pi$ so that $\sin(\pi p/q)$ is rational.
If $p/q\in\mathbb{Q}$, then $e^{\pm i\pi p/q}$ is an algbraic integer since $\left(e^{\pm i\pi p/q}\right)^q-(-1)^p=0$. Thus, $2\sin(\pi p/q)=-i\left(e^{i\pi p/q}-e^{-i\pi p/q}\right)$ is the difference and product of algebraic integers, and therefore an algebraic integer. However, the only rational algebraic integers are normal integers. Thus, the only values of $\sin(\pi p/q)$ which could be rational, are those for which $2\sin(\pi p/q)$ is an integer, that is $\sin(\pi p/q)\in\{-1,-\frac{1}{2},0,\frac{1}{2},1\}$.
like pi,30
? what? 30 degrees? that's not rational, only algebraic – leonbloy Dec 02 '11 at 15:54