13

Can it be shown that \begin{align} \sum_{n=1}^{\infty} \binom{2n}{n} \ \frac{H_{n+1}}{n+1} \ \left(\frac{3}{16}\right)^{n} = \frac{5}{3} + \frac{8}{3} \ \ln 2 - \frac{8}{3} \ \ln 3 \end{align} where $H_{n}$ is the Harmonic number and defined as \begin{align} H_{n} = \sum_{k=1}^{n} \frac{1}{k} = \int_{0}^{1} \frac{1-t^{n}}{1-t} \ dt. \end{align}

Leucippus
  • 26,329
  • What is the definition of $H_n$ ? – Rene Schipperus May 30 '14 at 16:42
  • @Rene , A definition of the Harmonic numbers has been added to the problem. – Leucippus May 30 '14 at 16:46
  • Out of curiosity, where did this expression come from? Is there anything special about $\frac3{16}$ or would you expect there to be a clean form for any number there? (My first suspicion would be an expression in $\ln 2$ and $\ln\alpha$ for $\sum_n{2n\choose n}\frac{H_{n+1}}{n+1}\alpha^n$, but that's purely intuition.) – Steven Stadnicki May 30 '14 at 16:57
  • @StevenStadnicki Indeed $\frac3{16}$ can be replaced by any number $x$ such that $|x|\lt\frac14$, only the final expression is simpler when $x=\frac3{16}$ since then the value of $\sqrt{1-4x}$ is nice. This kind of consideration would make for a MUCH more interesting question (here the standard exchange of integral and series works). – Did May 30 '14 at 17:06
  • @Steven The statement Did has made is correct in that the general expression has a "nice" form at the stated value of $3/16$. – Leucippus May 30 '14 at 17:38
  • I think we can use generating function for Catlan numbers :D ... but unfortunately it will work only for $H_n$ – S L May 30 '14 at 17:55
  • Have you tried writing $\frac{1-t^n}{1-t}=1+t+\cdots t^{n-1}$ and then collecting together the powers of $t$ in the original expression ? – Rene Schipperus May 30 '14 at 18:00
  • And at $2/9$, and at $15/64$, and at $6/25$, and... – Did May 30 '14 at 18:14
  • It should be possible to derive from the ordinary generating function for $\binom{2n}{n}H_{n}$. That is, $$ \sum_{n=0}^{\infty} \binom{2n}{n} H_{n} \ x^{n} = \frac{2}{\sqrt{1-4x}} \log \left( \frac{1+ \sqrt{1-4x}}{2 \sqrt{1-4x}} \right)$$ – Random Variable May 30 '14 at 18:27
  • looks like I can't evaluate that integral :S – S L May 30 '14 at 18:43
  • @Random Variable there is $\frac{1}{n+1}$ in the original formula how will you get that in the (very nice) generating formula ? – Rene Schipperus May 30 '14 at 18:44
  • @ReneSchipperus By integrating. It would require further manipulation beyond that to get it in that form. – Random Variable May 30 '14 at 18:53
  • @Leucippus: You could add the tags (harmonic-numbers), (Catalan-numbers) and (generating functions) to support searching. Best regards, Markus – Markus Scheuer Jun 02 '14 at 06:52
  • @Markus The tags suggested have been added. Good suggestion. Thanks – Leucippus Jun 02 '14 at 07:02

3 Answers3

13

Recall the formula of Catalan number $$ \small C_n=\frac{1}{n+1}\binom{2n}{n} $$ and its generating function $$ \small \sum_{n=1}^\infty C_n x^n=\frac{1-\sqrt{1-4x}}{2x}-1 $$ then $$ \small \begin{align} f(x) &=\sum_{n=1}^{\infty} \binom{2n}{n} \frac{H_{n+1}}{n+1} x^n\\ &=\sum_{n=1}^\infty C_n H_{n+1} x^n\\ &=\sum_{n=1}^\infty C_n x^n\lim\limits_{\varepsilon\to 0}\int_\varepsilon^{1-\varepsilon}\frac{1-t^{n+1}}{1-t}dt\\ &=\lim\limits_{\varepsilon\to 0}\sum_{n=1}^\infty C_n x^n\int_\varepsilon^{1-\varepsilon}\frac{1-t^{n+1}}{1-t}dt\\ &=\lim\limits_{\varepsilon\to 0}\int_\varepsilon^{1-\varepsilon}\frac{1}{1-t}\sum_{n=1}^\infty C_n x^n(1-t^{n+1})dt\\ &=\lim\limits_{\varepsilon\to 0}\int_\varepsilon^{1-\varepsilon}\frac{1}{1-t}\left(\sum_{n=1}^\infty C_n x^n-\sum_{n=1}^\infty C_n x^nt^{n+1}\right)dt\\ &=\lim\limits_{\varepsilon\to 0}\int_\varepsilon^{1-\varepsilon}\frac{1}{1-t}\left(\left(\frac{1- \sqrt{1-4x}}{2x}-1\right)-t\left(\frac{1-\sqrt{1-4xt}}{2xt}-1\right)\right)dt\\ &=\lim\limits_{\varepsilon\to 0}\int_\varepsilon^{1-\varepsilon}\left(\frac{1}{1-t}\frac{\sqrt{1-4xt}-\sqrt{1-4x}}{2x}-1\right)dt\\ &=-1+\frac{1}{2x}\lim\limits_{\varepsilon\to 0}\int_\varepsilon^{1-\varepsilon}\frac{\sqrt{1-4xt}-\sqrt{1-4x}}{1-t}dt\\ &=-1+\frac{1}{2x}\lim\limits_{\varepsilon\to 0}\left(\int_\varepsilon^{1-\varepsilon}\frac{\sqrt{1-4xt}}{1-t}dt-\sqrt{1-4x}\int_\varepsilon^{1-\varepsilon}\frac{dt}{1-t}\right) \\ &=-1+\frac{1}{2x}\lim\limits_{\varepsilon\to 0}\left(\int_{\sqrt{1-4x\varepsilon}}^{\sqrt{1-4x(1-\varepsilon)}}\frac{2u^2}{1-4x-u^2}du-\sqrt{1-4x}\ln\frac{1-\varepsilon}{\varepsilon}\right) \\ &=-1+\frac{1}{2x}\lim\limits_{\varepsilon\to 0}\left(2(1-4x)\int_{\sqrt{1-4x\varepsilon}}^{\sqrt{1-4x(1-\varepsilon)}}\frac{1}{1-4x-u^2}-2\int_{\sqrt{1-4x\varepsilon}}^{\sqrt{1-4x(1-\varepsilon)}}du-\sqrt{1-4x}\ln\frac{1-\varepsilon}{\varepsilon}\right) \\ &=-1+\frac{1}{2x}\lim\limits_{\varepsilon\to 0}\left(\sqrt{1-4x}\ln\frac{\sqrt{1-4x}+u}{\sqrt{1-4x}-u}\Biggl|_{\sqrt{1-4x\varepsilon}}^{\sqrt{1-4x(1-\varepsilon)}}-2u\Biggl|_{\sqrt{1-4x\varepsilon}}^{\sqrt{1-4x(1-\varepsilon)}}-\sqrt{1-4x}\ln\frac{1-\varepsilon}{\varepsilon}\right) \\ &=-1+\frac{1}{2x}\left(\sqrt{1-4x}\lim\limits_{\varepsilon\to 0}\left(\ln\frac{\sqrt{1-4x}+u}{\sqrt{1-4x}-u}\Biggl|_{\sqrt{1-4x\varepsilon}}^{\sqrt{1-4x(1-\varepsilon)}}-\ln\frac{1-\varepsilon}{\varepsilon}\right)-2\lim\limits_{\varepsilon\to 0}u\Biggl|_{\sqrt{1-4x\varepsilon}}^{\sqrt{1-4x(1-\varepsilon)}}\right) \\ &=-1+\frac{\sqrt{1-4x}}{2x}\lim\limits_{\varepsilon\to 0}\left(\ln\frac{\sqrt{1-4x}+u}{\sqrt{1-4x}-u}\Biggl|_{\sqrt{1-4x\varepsilon}}^{\sqrt{1-4x(1-\varepsilon)}}-\ln\frac{1-\varepsilon}{\varepsilon}\right)-\frac{1}{x}\lim\limits_{\varepsilon\to 0}\left(\sqrt{1-4x(1-\varepsilon)}-\sqrt{1-4x\varepsilon}\right) \\ &=-1+\frac{\sqrt{1-4x}}{2x}\lim\limits_{\varepsilon\to 0}\left(\ln\frac{\sqrt{1-4x}+u}{\sqrt{1-4x}-u}\Biggl|_{\sqrt{1-4x\varepsilon}}^{\sqrt{1-4x(1-\varepsilon)}}-\ln\frac{1-\varepsilon}{\varepsilon}\right)-\frac{\sqrt{1-4x}-1}{x} \\ &=\frac{1-x-\sqrt{1-4x}}{x}+\frac{\sqrt{1-4x}}{2x}\lim\limits_{\varepsilon\to 0}\left(\ln\frac{\sqrt{1-4x}+\sqrt{1-4x(1-\varepsilon)}}{\sqrt{1-4x}-\sqrt{1-4x(1-\varepsilon)}}-\ln\frac{\sqrt{1-4x}+\sqrt{1-4x\varepsilon}}{\sqrt{1-4x}-\sqrt{1-4x\varepsilon}}-\ln\frac{1-\varepsilon}{\varepsilon}\right) \\ &=\frac{1-x-\sqrt{1-4x}}{x}+\frac{\sqrt{1-4x}}{2x}\lim\limits_{\varepsilon\to 0}\ln\frac{\sqrt{1-4x}+\sqrt{1-4x(1-\varepsilon)}}{\sqrt{1-4x}-\sqrt{1-4x(1-\varepsilon)}}\frac{\sqrt{1-4x}-\sqrt{1-4x\varepsilon}}{\sqrt{1-4x}+\sqrt{1-4x\varepsilon}}\frac{\varepsilon}{1-\varepsilon} \\ &=\frac{1-x-\sqrt{1-4x}}{x}+\frac{\sqrt{1-4x}}{2x}\lim\limits_{\varepsilon\to 0}\ln\frac{(\sqrt{1-4x}+\sqrt{1-4x(1-\varepsilon)})^2}{(\sqrt{1-4x})^2-(\sqrt{1-4x(1-\varepsilon)})^2}\frac{(\sqrt{1-4x})^2-(\sqrt{1-4x\varepsilon})^2}{(\sqrt{1-4x}+\sqrt{1-4x\varepsilon})^2}\frac{\varepsilon}{1-\varepsilon} \\ &=\frac{1-x-\sqrt{1-4x}}{x}+\frac{\sqrt{1-4x}}{2x}\lim\limits_{\varepsilon\to 0}\ln\frac{(\sqrt{1-4x}+\sqrt{1-4x(1-\varepsilon)})^2}{-4x\varepsilon}\frac{4x(\varepsilon-1)}{(\sqrt{1-4x}+\sqrt{1-4x\varepsilon})^2}\frac{\varepsilon}{1-\varepsilon} \\ &=\frac{1-x-\sqrt{1-4x}}{x}+\frac{\sqrt{1-4x}}{2x}\lim\limits_{\varepsilon\to 0}\ln\frac{(\sqrt{1-4x}+\sqrt{1-4x(1-\varepsilon)})^2}{(\sqrt{1-4x}+\sqrt{1-4x\varepsilon})^2} \\ &=\frac{1-x-\sqrt{1-4x}}{x}+\frac{\sqrt{1-4x}}{x}\ln\frac{2\sqrt{1-4x}}{\sqrt{1-4x}+1} \\ \end{align} $$ After substitution $\small x=3/16$ we get $$ \small f\left(\frac{3}{16}\right)=\frac{5}{3}-\frac{4}{3}\ln\frac{9}{4} $$

Norbert
  • 56,803
  • looks like you evaluated that integral after all (+1) – S L May 31 '14 at 03:03
  • @SantoshLinkha It was a hard time and for the first time I evaluated another sum $\sum_{n=1}^\infty C_n H_n x^n$ and could not understand where the mistake. – Norbert May 31 '14 at 05:15
  • the method you employed seems applicable to evaluate the expression I got ... but I couldn't lol – S L May 31 '14 at 06:02
  • @Norbert: Fine, to see this straight forward calculation based upon the GF of the Catalan Numbers. Upvote. – Markus Scheuer May 31 '14 at 10:11
12

Note: Please note, that this question is strongly related (in fact nearly the same) as this question. Both questions are (essentially) asking for a generating function of

\begin{align*} A(t):=\sum_{n\ge1}C_{n}H_{n+1}t^n=\sum_{n\ge1}\binom{2n}{n}\frac{H_{n+1}}{n+1}t^n\tag{1} \end{align*}

with $C_n=\frac{1}{n+1}\binom{2n}{n}$ the Catalan numbers and $H_n=\sum_{k=1}^{n}\frac{1}{k}$ the Harmonic numbers. This one asks for $A\left(\frac{3}{16}\right)$, the other one asks for $-A\left(-\frac{1}{4}\right)$.

The answer(s) of the related question are based upon a paper from Boyadhziev Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers ($2012$). This paper presents many interesting identities and in fact, the generating function we are searching for is also deduced in this paper.

Many ideas from this paper are already stated in the answers of the related question. Here, I try to summarise these and add some additional ones which could be useful to answer the current question.

Overview: The main themes in order to find the ordinary generating function (ogf) of $A(t)$ are binomial inverse pairs and an interesting variation of Euler's series transformation formula. They are used in combination with the ogf for the Catalan Numbers and the ogf for the central binomial coefficients $\binom{2n}{n}$.

Note: You will see this approach is not really straight forward. But the benefit is, that we will derive some interesting generating functions in order to finally reach $A(t)$.

We start with a binomial inverse pair. To show the relationship we multiply exponential generating functions (egfs). Let $A(x)=\sum_{n\ge0}a_{n}\frac{x^n}{n!}$ and $B(x)=\sum_{n\ge0}b_{n}\frac{x^n}{n!}$ egfs with $B(x)=A(x)e^x$. Comparing coefficients gives the following

Binomial inverse pair \begin{align*} B(x)&=A(x)e^x&A(x)&=B(x)e^{-x}\\ b_n&=\sum_{k=0}^{n}\binom{n}{k}a_k&a_n&=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}b_k\tag{2} \end{align*}

Next, we observe the following identity for Harmonic Numbers:

Identity of Harmonic Numbers $H_n$ \begin{align*} H_n&=\sum_{k=1}^{n}(-1)^{k+1}\binom{n}{k}\frac{1}{k} \end{align*}

(See e.g. the related question for a proof). And we see, that $(-1)^{n-1}H_n$ and $\frac{1}{n}$ are a binomial inverse pair:

Inverse pair with Harmonic Numbers $H_n$ \begin{align*} (-1)^{n-1}H_n=\sum_{k=1}^{n}\binom{n}{k}\frac{(-1)^{n-k}}{k}&&\frac{1}{n}=\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1}H_k\tag{3} \end{align*}

Most important for the following is Euler's series transformation formula: which transforms sequences $(a_n)_{n\ge0}$ to $\left(\sum_{k=0}^{n}\binom{n}{k}a_k\right)_{n\ge 0}$ with the help of ordinary generating functions.

Euler's series transformation formula:

Given a function $f(t)=\sum_{n\ge0}a_{n}t^n$ analytical on the unit disk, the following representation is valid: \begin{align*} \left(a_n\right)_{n\ge 0}&&\left(b_n\right)_{n\ge 0}&=\left(\sum_{k=0}^{n}\binom{n}{k}a_k\right)_{n\ge 0}\\ f(t)=\sum_{n\ge0}&a_nt^n&g(t)&=\sum_{n\ge 0}b_nt^n\\ \end{align*} $$\text{with}\qquad \qquad f(t)=\frac{1}{1-t}g\left(\frac{t}{1-t}\right)$$

Boyadhziev develops a variation of Euler's series transformation formula customized for central binomial coefficients:

Euler's series transformation formula for central binomial coefficients: \begin{align*} \left(a_n\right)_{n\ge 0}&&\left(b_n\right)_{n\ge 0}&=\left(\sum_{k=0}^{n}\binom{n}{k}a_k\right)_{n\ge 0}\\ f(t)=\sum_{n\ge0}&\binom{2n}{n}a_nt^n&g(t)&=\sum_{n\ge 0}\binom{2n}{n}b_nt^n\\ \end{align*} \begin{align*} \text{with}\qquad \qquad f(t)=\frac{1}{\sqrt{1+4t}}g\left(\frac{t}{1+4t}\right)\tag{4} \end{align*}

Now, it's time to harvest:

The following identity is valid:

\begin{align*} \sum_{n\ge 0}\binom{2n}{n}(-1)^{n-1}H_nt^n=\frac{1}{\sqrt{1+4t}}\sum_{n\ge 1}\binom{2n}{n}\frac{1}{n}\left(\frac{t}{1+4t}\right)^n\tag{5} \end{align*}

Take $a_n=(-1)^{n-1}H_n$ and apply the binomial pairs $(-1)^{n-1}H_n$ and $\frac{1}{n}$ of $(3)$ together with $(4)$ to get $(5)$.

This was the first step to reach $A(z)$. The next step uses the

Generating function of the central binomial coefficients

$$\sum_{n\ge 0}\binom{2n}{n}t^n=\frac{1}{\sqrt{1-4t}}$$

Rewriting it as

$$\sum_{n\ge 1}\binom{2n}{n}t^{n-1}=\frac{1}{t\sqrt{1-4t}}-\frac{1}{t}$$

and integrating it using the substitution $1-4t=y^2$, $dt=-\frac{1}{2}y dy$ results in

\begin{align*} \sum_{n\ge 1}\binom{2n}{n}\frac{t^{n}}{n}=2\ln\frac{2}{1+\sqrt{1-4t}}\tag{6} \end{align*}

The calculation: \begin{align*} \sum_{n\ge 1}\binom{2n}{n}\frac{t^{n}}{n}&=\int\frac{dt}{t\sqrt{1-4t}}-\int\frac{dt}{t}+C\\ &=-2\int\frac{dy}{1-y^2}-\ln t + C\\ &=\ln{(1-y)}-\ln(1+y)-\ln t + C\\ &=\ln\frac{1-\sqrt{1-4t}}{1+\sqrt{1+4t}}-\ln t + C\\ &=\ln\frac{(1-\sqrt{1-4t})^2}{4t^2}+C\\ &=2\ln\frac{2}{1+\sqrt{1-4t}} \end{align*} by observing that $C=0$ when setting $t=0$.

Now, applying the RHS of $(6)$ in $(5)$ we get

\begin{align*} \sum_{n\ge 0}\binom{2n}{n}(-1)^{n-1}H_nt^n=\frac{2}{\sqrt{1+4t}}\ln\frac{2\sqrt{1+4t}}{1+\sqrt{1+4t}}\tag{7} \end{align*}

and replacing $t$ with $-t$ yields.

\begin{align*} \sum_{n\ge 0}\binom{2n}{n}H_nt^n=\frac{2}{\sqrt{1-4t}}\ln\frac{1+\sqrt{1-4t}}{2\sqrt{1-4t}}\tag{8} \end{align*}

Note: The identities $(7)$ and $(8)$ are Theorem $1$ in the paper from Boyadhziev (as usual $H_0 := 0$).

Now, integrating $(8)$ and using the same substitution $1-4t=y^2$ as in $(6)$ yields:

\begin{align*} \sum_{n\ge 0}&\binom{2n}{n}\frac{H_n}{n+1}t^{n+1}\\ &=\sqrt{1-4t}\ln(2\sqrt{1-4t})-(1+\sqrt{1-4t})\ln(1+\sqrt{1-4t})+\ln 2\tag{9} \end{align*}

Note: The identity $(9)$ is Corollary $2$ in the paper from Boyadzhiev.

We are not yet finished, because we are searching an identity similar to $(8)$ but with $H_{n+1}$ instead of $H_n$.

Now, we observe

\begin{align*} H_{n+1}&=H_n+\frac{1}{n+1}\\ \frac{H_{n+1}}{n+1}&=\frac{H_n}{n+1}+\frac{1}{(n+1)^2}\tag{10} \end{align*}

We see, when looking at the RHS of $(10)$, that we need an ogf with $a_n=\binom{2n}{n}\frac{1}{(n+1)^2}$. Therefore we start with the

Generating function for the Catalan Numbers:

\begin{align*} \sum_{n\ge0}\binom{2n}{n}\frac{t^n}{n+1}=\frac{2}{1+\sqrt{1-4t}}\tag{11} \end{align*}

Integrating $(11)$ and using the same substitution $1-4t=y^2$ as in $(6)$ yields

\begin{align*} \sum_{n\ge0}\binom{2n}{n}\frac{t^{n+1}}{(n+1)^2}=\ln(1+\sqrt{1-4t})-\sqrt{1-4t}+1-\sqrt{2}\tag{12} \end{align*}

Now, it's really time to harvest: Combining according to $(10)$ the ogfs of $(9)$ and $(12)$ we see:

The following identities are valid:

\begin{align*} \sum_{n\ge0}\binom{2n}{n}\frac{H_{n+1}}{n+1}t^{n+1} &=1+\sqrt{1-4t}\left(\ln\frac{2\sqrt{1-4t}}{1+\sqrt{1-4t}}-1\right)\\ \text{resp.}&\tag{13}\\ A(t)=\sum_{n\ge1}\binom{2n}{n}\frac{H_{n+1}}{n+1}t^{n} &=\frac{1-t}{t}+\frac{\sqrt{1-4t}}{t}\left(\ln\frac{2\sqrt{1-4t}}{1+\sqrt{1-4t}}-1\right)\\ \end{align*}

Note: The identities $(13)$ are stated in section $3$ in the paper from Boyadzhiev.

Now, inserting $t=\frac{3}{16}$ in $A(t)$ gives the answer to this question: \begin{align*} \sum_{n\ge1}\binom{2n}{n}\frac{H_{n+1}}{n+1}\left(\frac{3}{16}\right)^n &=\frac{16}{3}\left(1-\frac{3}{16}+\frac{1}{2}\left(\ln\frac{2}{3}-1\right)\right)\\ &=\frac{5}{3}+\frac{8}{3}\ln\frac{2}{3} \end{align*}

Markus Scheuer
  • 108,315
  • This is indeed the paper from which the equation was obtained, namely what is posted here as (13). The problem proposed represents a nice compact form and still represents a series which maintains a mathematical beauty. – Leucippus Jun 01 '14 at 15:56
  • 1
    @Leucippus: I agree! It was a pleasure for me to work through this paper (and some of its references). – Markus Scheuer Jun 01 '14 at 16:03
9

$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\sum_{n = 1}^{\infty}{2n \choose n}\, {H_{n + 1} \over n + 1}\pars{3 \over 16}^{n} ={5 \over 3} + {8 \over 3}\,\ln\pars{2} - {8 \over 3}\,\ln\pars{3} \approx {\tt 0.5854}:\ {\large ?}}$.

\begin{align} \mbox{Note that}\quad H_{n + 1}&=\int_{0}^{1}{1 - t^{n + 1} \over 1 - t}\,\dd t =-\pars{n + 1}\int_{0}^{1}\ln\pars{1 - t}t^{n}\,\dd t \end{align}

With $\ds{\mu \equiv {3 \over 16}}$: \begin{align}&\color{#c00000}{\sum_{n = 1}^{\infty}{2n \choose n}\, {H_{n + 1} \over n + 1}\pars{3 \over 16}^{n}} =-1 -\int_{0}^{1}\ln\pars{1 - t}\color{#00f}{\sum_{n = 0}^{\infty}% {2n \choose n}\,\pars{\mu t}^{n}}\,\dd t\tag{1} \end{align}

Lets evaluate the "$\ds{\color{#00f}{\mbox{blue sum}}}$": \begin{align}&\color{#00f}{\sum_{n = 0}^{\infty}{2n \choose n}\,\pars{\mu t}^{n}} =\sum_{n = 0}^{\infty}\pars{\mu t}^{n}\oint_{\verts{z}\ =\ 1} {\pars{1 + z}^{2n} \over z^{n + 1}}\,{\dd z \over 2\pi\ic} \\[3mm]&=\oint_{\verts{z}\ =\ 1}{1 \over z}\sum_{n = 0}^{\infty}\bracks{% \pars{1 + z}^{2}\mu t \over z}^{n}\,{\dd z \over 2\pi\ic} =\oint_{\verts{z}\ =\ 1}{1 \over z} {1 \over 1 - \pars{1 + z}^{2}\mu t/z}\,{\dd z \over 2\pi\ic} \\[3mm]&=-\,{1 \over \mu t}\oint_{\verts{z}\ =\ 1} {1 \over z^{2} + \bracks{2 - 1/\pars{\mu t}}z + 1}\,{\dd z \over 2\pi\ic} \end{align} The integrand has one pole inside the contour $\ds{\pars{~p \equiv {1 - 2\mu t - \root{1 - 4\mu t} \over 2\mu t}~}}$ such that: \begin{align} &\color{#00f}{\sum_{n = 1}^{\infty}{2n \choose n}\,\pars{\mu t}^{n}} =-\,{1 \over \mu t}\,{1 \over 2p + 2 - 1/\pars{\mu t}} =-\,{1 \over 2p\mu t + 2\mu t - 1} ={1 \over \root{1 - 4\mu t}} \end{align}

Replacing in $\pars{1}$: \begin{align}&\!\!\!\!\!\!\!\!\!\! \color{#c00000}{\sum_{n = 1}^{\infty}{2n \choose n}\, {H_{n + 1} \over n + 1}\ \overbrace{\pars{3 \over 16}^{n}} ^{\ds{\color{#000}{\mu^{n}}}}}\ =\ -1 - \int_{0}^{1}{\ln\pars{1 - t} \over \root{1 - 4\mu t}}\,\dd t =-1 - \int_{0}^{1}{\ln\pars{1 - t} \over \root{1 - 3t/4}}\,\dd t\tag{2} \end{align} The integral is easily evaluated with the change of variables $\ds{x \equiv \root{1 - 3t/4}}$: \begin{align}&\int_{0}^{1}{\ln\pars{1 - t} \over \root{1 - 3t/4}}\,\dd t =-\,{8 \over 3}\int_{1}^{1/2}\bracks{\ln\pars{4 \over 3} + \ln\pars{x + \half} + \ln\pars{x - \half}}\,\dd x \\[3mm]&={8 \over 3}\bracks{\ln\pars{3 \over 2} - 1} \end{align}

By replacing this result in $\pars{2}$, we find: $$\color{#66f}{\large% \sum_{n = 1}^{\infty}{2n \choose n}\,{H_{n + 1} \over n + 1}\pars{3 \over 16}^{n} ={5 \over 3} + {8 \over 3}\,\ln\pars{2} - {8 \over 3}\,\ln\pars{3}} \approx {\tt 0.5854} $$

Felix Marin
  • 89,464