I was given this proposition but I was never able to prove it. Does anyone know how to solve this?
Let $f$ be a polynomial in $\mathbb{Z}/p\mathbb{Z}[x]$, where $p$ is prime. Then $f$ has at most $\deg f$ roots.
I was given this proposition but I was never able to prove it. Does anyone know how to solve this?
Let $f$ be a polynomial in $\mathbb{Z}/p\mathbb{Z}[x]$, where $p$ is prime. Then $f$ has at most $\deg f$ roots.
Hint $ $ If $\,f\ne 0\,$ has $\:\!\deg f =n\,$ distinct roots $\,r_i$ then inductively applying the Factor Theorem (as below) shows $\,f = c(x\!-\!r_1)\cdots (x\!-\!r_n),\,$ so $\ r\ne r_i\,\Rightarrow\, f(r)= c(r\!-\!r_1)\cdots (r\!-\!r_n) \ne 0\,$ since all factors $\ne 0,\,$ and $\,\Bbb Z_p\,$ is an integral domain. Thus $\,f\,$ has at most $\,n\,$ roots.
Alternatively $\,f(r_i)= 0 \,\Rightarrow\, x-r_i \mid f(x).\,$ Being divisible by the nonassociate primes $\,x-r_i\,$ it follows $\,f\,$ is divisible by their lcm = product, so there are at most $\,\deg(f)\,$ factors ($\leftrightarrow$ roots). (Recall $\,x-r\,$ is prime in $\,R[x]\iff R[x]/(x-r)\cong R\,$ is a domain).
Bifactor Theorem $\ $ Let $\rm\,a,b\in R,\,$ a commutative ring, and $\rm\:f\in R[x]\:$ a polynomial over $\,\rm R.\,$
If $\rm\ \color{#0a0}{a\!-\!b}\ $ is $\,\color{#c00}{\rm cancellable}\,$ in $\rm\,R\,$ (i.e. not a zero-divisor) $ $ then
$$\rm f(a) = 0 = f(b)\ \iff\ f\, =\, (x\!-\!a)(x\!-\!b)\ h\ \ for\ \ some\ \ h\in R[x],$$
hence by induction $\rm \,(x\!-\!a)^k\mid f,\ g\mid f\,\Rightarrow\, (x\!-\!a)^k g\mid f\ $ if $\rm\,\color{#0a0}{g(a)}\,$ is $\rm\color{#c00}{cancellable}$.
Proof $\,\ (\Leftarrow)\,$ clear. $\ (\Rightarrow)\ $ Applying Factor Theorem twice, while canceling $\rm\: \color{#0a0}{a\!-\!b},$
$$\begin{eqnarray}\rm\:f(b)= 0 &\ \Rightarrow\ &\rm f(x)\, =\, (x\!-\!b)\,g(x)\ \ for\ \ some\ \ g\in R[x]\\[.1em] \rm f(a) = (\color{#0a0}{a\!-\!b})\,g(a) = 0 &\color{#c00}\Rightarrow&\rm g(a)\, =\, 0\,\ \Rightarrow\ g(x) \,=\, (x\!-\!a)\,h(x)\ \ for\ \ some\ \ h\in R[x]\\[.1em] &\Rightarrow&\rm f(x)\, =\, (x\!-\!b)\,g(x) \,=\, (x\!-\!b)(x\!-\!a)\,h(x)\end{eqnarray}$$
The claimed induction: $ $ let $\,\rm P_{j}\,$ denote $\rm\,\color{#08f}{(x\!-\!a)^{j}\:\!g}\mid f.\,$ Base case: $\,\rm P_0\,$ is true by hypothesis. Inductive step: suppose $\rm P_n$ is true, and $\,\rm n <\color{darkorange} k.\,$ Then $\rm\,(x\!-\!a)^{n+1}\mid (x\!-\!a)^k\mid f,\,$ i.e.
$\rm (x\!-\!a)^{n+1}\!\mid \color{#08f}{(x\!-\!a)^ng}\,h\Rightarrow x\!-\!a\mid g\:\!h\Rightarrow \color{#0a0}{g(a)} h(a)\!=\!0\color{#c00}\Rightarrow h(a)\!=\!0\Rightarrow x\!-\!a\mid h$
so $\rm\,h = (x\!-\!a)\bar h\,$ so $\rm\,f = (x\!-\!a)^{n+1}g\bar h,\,$ i.e. $\,\rm P_n\Rightarrow P_{n+1},\,$ so $\rm \,P_n\,$ is true for $\,\rm n={\color{darkorange} k}$.
Remark $\ $ The theorem may fail when $\rm\ \color{#0a0}{a\!-\!b}\ $ is not $\rm\color{#c00}{cancelable}$ (i.e. is a zero-divisor), e.g.
$$\rm mod\ 8\!:\,\ f(x)=x^2\!-1\,\Rightarrow\,f(3)\equiv 0\equiv f(1)\ \ but\ \ x^2\!-1\not\equiv (x\!-\!3)(x\!-\!1)\equiv x^2\!-4x+3$$
A polynomial of degree $n$ with coefficients in any field can have at most $n$ roots, because $X-\alpha$ is a factor of $f$ whenever $\alpha$ is a root, and the polynomial ring is a UFD.
As a consequence, a polynomial with coefficients in any integral domain can have at most $n$ roots: just consider the roots in the fraction field. (In fact, this property characterizes integral domains.)