For real $x$ let $L(x) = \operatorname{lcm}(1,2,3,\dots,\lfloor x \rfloor)$, we have:
$$ L(n) = \prod_{p^k\le n } p \qquad\qquad(1)$$
where the product extends to all prime powers in the range $1, n$.
in his proof of Bertrand's postulate, Tchebyshev proved that
$$ n! = \prod_{k=1}^\infty L\left(\frac{n}{k}\right) \qquad\qquad(2)$$
this can be proved easily by induction, it is trivial for $n=1$ then going from $n-1$ involves a factor of $n$ in the left hand side while in the right hand side, we get a product of terms:
$$ \frac{L(n/k)}{L((n-1)/k)} = \begin{cases} p \quad & \text{if } n/k=p^t\\
1 &\text{otherwise}
\end{cases}$$
so we have a factor $p$ for every $p^t\vert n$ and so a total factor of $n$ also in the right.
And he used (2) to prove something implying:
$$\frac{n! \lfloor n/30\rfloor!}{\lfloor n/2\rfloor!\lfloor n/3\rfloor!\lfloor n/5\rfloor!} \text{ is an integer and divides } L(n) $$
Using the same method we are going to show something weaker:
$$R(n)=\frac{n! \lfloor n/12\rfloor!}{\lfloor n/2\rfloor!\lfloor n/3\rfloor!\lfloor n/4\rfloor!} \text{ is an integer and divides } L(n) \qquad\qquad(3) $$
To prove (3) we substitute (2) in $R(n)$ and we get
$$ R(n) = \frac{L(n)L(n/2)L(n/3)\dots \times L(n/12)L(n/2 4)\dots }{
L(n/2)L(n/4)L(n/8) \dots \times L(n/3)L(n/6)L(n/9) \dots \times L(n/4)L(n/8)L(n/12) \dots} $$
it is easy to check that this simplifies to
$$ R(n) = \frac{L(n)}{L(n/4)}\times \frac{L(n/5)}{L(n/6)} \times \frac{L(n/7)}{L(n/8)} \times \frac{L(n/11)}{L(n/12)} \times \dots $$
where the sequence repeats modulo 12 this ie the next term would be $L(n/(12+1))/L(n/(12+4))$, the next $L(n/(12+5))/L(n/(12+4))$ and so on. As every factor $L(n)/L(n/4), \dots$ is an integer this shows that $R(n)$ is an integer. On the other hand the same product shows that
$$ R(n) = \prod_{n/4< p^k \le n} p \times \prod_{n/6< p^k \le n/5} p \times \prod_{n/7< p^k \le n/8} \times \dots $$
and as the ranges in the products do not overlap we have:
$$ R(n) \text{ divides }\prod_{ p^k \le n} p = L(n)$$
And this ends the proof of (3).
So it is enough to show that $R(n) \ge 2^n$ for $n\ge 7$. $R(n)$ es easy to compute knowing $R(n-1)$ just checking which new factors appear in the numerator and denominator of $R(n)$ when going from $n-1$ to $n$:
$$ \frac{R(n)}{R(n-1)} = \begin{cases}
n \quad & \text{ si } \operatorname{gcd}(n,12)=1\\
2 \quad & \text{ si } \gcd(n,12)=2\\
3 \quad & \text{ si } \gcd(n,12)=3\\
8/n \quad & \text{ si } \gcd(n,12)=4\\
6/n \quad & \text{ si } \gcd(n,12)=6\\
2/n \quad & \text{ si } \gcd(n,12)=12
\end{cases}$$
Now we can proceed by induction, suppose that we know that $R(12k) \ge 2^{12k}$, for some $k\ge 1$ then the following table shows that $R(12k+t) \ge 2^{12k+t}$
$t$ |
$\gcd(12,t)$ |
$\frac{R(12k+t)}{R(12k+t-1)}$ |
$R(12k+t)/R(12k)$ |
1 |
1 |
$12k+1$ |
$12k+1 \ge 2$ |
2 |
2 |
$2$ |
$2(12k+1)\ge 2^2$ |
3 |
3 |
$3$ |
$6(12k+1)\ge 2^3$ |
4 |
4 |
$\frac{4}{12k+4}$ |
$6\frac{12k+1}{3k+1}\ge 2^4$ |
5 |
1 |
$12k+5$ |
$\ge 24(12k+1)\ge 2^5$ |
6 |
6 |
$\frac{6}{12k+6}$ |
$\ge 144 \frac{12k+5}{12k+6}\ge 2^6$ |
7 |
1 |
$12k+7$ |
$\ge 144 (12k+5) \ge 2^7$ |
8 |
4 |
$\frac{4}{12k+8}$ |
$\ge 576 \frac{12k+5}{12k+8} \ge 2^8$ |
9 |
3 |
$3$ |
$\ge 1728 \frac{12k+5}{12k+8} \ge 2^9$ |
10 |
2 |
$2$ |
$\ge 3456 \frac{12k+5}{12k+8} \ge 2^{10}$ |
11 |
1 |
$12k+11$ |
$\ge 3456 \frac{12k+5} \ge 2^{11}$ |
12 |
12 |
$\frac{2}{12k+12}$ |
$\ge 6912 \frac{12k+5}{12k+12} \ge 2^{12}$ |
We also have that $R(7)=R(8)=420$, $R(9)=1260$, $R(10)=2520$, $R(11)=27720$ and $R(12)=4620$, all of them verify $R(n)\ge 2^n$ so we finally have
$$ L(n) \ge R(n)\ge 2^n. $$