The Euclidean norm of a vector $\textbf{x}$ is represented by $||\textbf{x}||_2 = \sqrt{(x_1^2 + x_2^2 + ... + x_n^2)}$ where, $\textbf{x} = [x_1,x_2,...x_n]^\top$, a column vector. The norm is a scalar value. The derivative of a scalar with respect to the vector $\textbf{x}$ must result in a vector (similar to a gradient of a function from $f : R^n \rightarrow R$). To estimate the derivative of a scalar with respect to a vector, we estimate the partial derivative of the scalar with respect to each component of the vector and arrange the partial derivatives to form a vector. The derivative is represented by the grad operator $\nabla$
$$\nabla_\textbf{x}||\textbf{x}||_2 = [\frac{\partial}{\partial x_1}||\textbf{x}||_2, \frac{\partial}{\partial x_2}||\textbf{x}||_2, ... \frac{\partial}{\partial x_n}||\textbf{x}||_2]^\top$$
The $i^{th}$ component of the derivative is given by:
$\frac{\partial}{\partial x_i}||\textbf{x}|| = \frac{\partial}{\partial x_i}\sqrt{(x_1^2 + x_2^2 + ... + x_n^2)} = \frac{1}{2} \frac{2x_i}{(x_1^2 + x_2^2 + ... + x_n^2)^{1/2}}= \frac{x_i}{\sqrt{(x_1^2 + x_2^2 + ... + x_n^2)}}$. Since $\frac{d}{dx}f(x)^n = nf(x)^{n-1}\frac{d}{dx}f(x)$.
Putting all the partial derivatives $(x_i)$ together, we get,
$$\nabla_\textbf{x}||\textbf{x}||_2 = \frac{\textbf{x}}{||\textbf{x}||_2}$$